31 research outputs found

    Topological quantum D-branes and wild embeddings from exotic smooth R^4

    Full text link
    This is the next step of uncovering the relation between string theory and exotic smooth R^4. Exotic smoothness of R^4 is correlated with D6 brane charges in IIA string theory. We construct wild embeddings of spheres and relate them to a class of topological quantum Dp-branes as well to KK theory. These branes emerge when there are non-trivial NS-NS H-fluxes where the topological classes are determined by wild embeddings S^2 -> S^3. Then wild embeddings of higher dimensional pp-complexes into S^n correspond to Dp-branes. These wild embeddings as constructed by using gropes are basic objects to understand exotic smoothness as well Casson handles. Next we build C*-algebras corresponding to the embeddings. Finally we consider topological quantum D-branes as those which emerge from wild embeddings in question. We construct an action for these quantum D-branes and show that the classical limit agrees with the Born-Infeld action such that flat branes = usual embeddings.Comment: 18 pages, 1 figur

    On manifolds with nonhomogeneous factors

    Get PDF
    We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces

    Strictly Toral Dynamics

    Full text link
    This article deals with nonwandering (e.g. area-preserving) homeomorphisms of the torus T2\mathbb{T}^2 which are homotopic to the identity and strictly toral, in the sense that they exhibit dynamical properties that are not present in homeomorphisms of the annulus or the plane. This includes all homeomorphisms which have a rotation set with nonempty interior. We define two types of points: inessential and essential. The set of inessential points ine(f)ine(f) is shown to be a disjoint union of periodic topological disks ("elliptic islands"), while the set of essential points ess(f)ess(f) is an essential continuum, with typically rich dynamics (the "chaotic region"). This generalizes and improves a similar description by J\"ager. The key result is boundedness of these "elliptic islands", which allows, among other things, to obtain sharp (uniform) bounds of the diffusion rates. We also show that the dynamics in ess(f)ess(f) is as rich as in T2\mathbb{T}^2 from the rotational viewpoint, and we obtain results relating the existence of large invariant topological disks to the abundance of fixed points.Comment: Incorporates suggestions and corrections by the referees. To appear in Inv. Mat

    Codimension 2 nonfibrators with finite fundamental groups

    No full text

    Decompositions into submanifolds of fixed codimension

    No full text

    Cell-like decompositions arising from mismatched sewings: applications to 4-manifolds

    No full text
    corecore