1,398 research outputs found
Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences
Compressive sensing (CS) has recently emerged as a framework for efficiently
capturing signals that are sparse or compressible in an appropriate basis.
While often motivated as an alternative to Nyquist-rate sampling, there remains
a gap between the discrete, finite-dimensional CS framework and the problem of
acquiring a continuous-time signal. In this paper, we attempt to bridge this
gap by exploiting the Discrete Prolate Spheroidal Sequences (DPSS's), a
collection of functions that trace back to the seminal work by Slepian, Landau,
and Pollack on the effects of time-limiting and bandlimiting operations. DPSS's
form a highly efficient basis for sampled bandlimited functions; by modulating
and merging DPSS bases, we obtain a dictionary that offers high-quality sparse
approximations for most sampled multiband signals. This multiband modulated
DPSS dictionary can be readily incorporated into the CS framework. We provide
theoretical guarantees and practical insight into the use of this dictionary
for recovery of sampled multiband signals from compressive measurements
The economics of antidumping and the Uruguay Round
Antidumping actions are widely criticised for being used as a protective device rather than as a means of controlling unfair trade practices. Michael Davenport discusses the complaints and proposals for change brought forward by the affected exporting countries in the current GATT round. Phedon Nicolaides analyses the antidumping policy of the European Community which has recently been the butt of particularly heavy criticism
Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries
Compressive sensing (CS) has recently emerged as a powerful framework for
acquiring sparse signals. The bulk of the CS literature has focused on the case
where the acquired signal has a sparse or compressible representation in an
orthonormal basis. In practice, however, there are many signals that cannot be
sparsely represented or approximated using an orthonormal basis, but that do
have sparse representations in a redundant dictionary. Standard results in CS
can sometimes be extended to handle this case provided that the dictionary is
sufficiently incoherent or well-conditioned, but these approaches fail to
address the case of a truly redundant or overcomplete dictionary. In this paper
we describe a variant of the iterative recovery algorithm CoSaMP for this more
challenging setting. We utilize the D-RIP, a condition on the sensing matrix
analogous to the well-known restricted isometry property. In contrast to prior
work, the method and analysis are "signal-focused"; that is, they are oriented
around recovering the signal rather than its dictionary coefficients. Under the
assumption that we have a near-optimal scheme for projecting vectors in signal
space onto the model family of candidate sparse signals, we provide provable
recovery guarantees. Developing a practical algorithm that can provably compute
the required near-optimal projections remains a significant open problem, but
we include simulation results using various heuristics that empirically exhibit
superior performance to traditional recovery algorithms
An Evaluation of the Masters Program in Industrial Arts Education at Old Dominion University 1974-1979
The purpose of this study was accomplished for two basic reasons: 1. To determine the degree to which the Industrial Arts Education program achieved its objectives; 2. To collect data needed to improve the overall effectiveness and efficiency of the Masters Program in Industrial Arts Education
New techniques for the production of high-performing industrial enzymes
Please click Additional Files below to see the full abstract
- …