1,012 research outputs found

    How well can we estimate a sparse vector?

    Get PDF
    The estimation of a sparse vector in the linear model is a fundamental problem in signal processing, statistics, and compressive sensing. This paper establishes a lower bound on the mean-squared error, which holds regardless of the sensing/design matrix being used and regardless of the estimation procedure. This lower bound very nearly matches the known upper bound one gets by taking a random projection of the sparse vector followed by an â„“1\ell_1 estimation procedure such as the Dantzig selector. In this sense, compressive sensing techniques cannot essentially be improved

    Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences

    Full text link
    Compressive sensing (CS) has recently emerged as a framework for efficiently capturing signals that are sparse or compressible in an appropriate basis. While often motivated as an alternative to Nyquist-rate sampling, there remains a gap between the discrete, finite-dimensional CS framework and the problem of acquiring a continuous-time signal. In this paper, we attempt to bridge this gap by exploiting the Discrete Prolate Spheroidal Sequences (DPSS's), a collection of functions that trace back to the seminal work by Slepian, Landau, and Pollack on the effects of time-limiting and bandlimiting operations. DPSS's form a highly efficient basis for sampled bandlimited functions; by modulating and merging DPSS bases, we obtain a dictionary that offers high-quality sparse approximations for most sampled multiband signals. This multiband modulated DPSS dictionary can be readily incorporated into the CS framework. We provide theoretical guarantees and practical insight into the use of this dictionary for recovery of sampled multiband signals from compressive measurements

    Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries

    Get PDF
    Compressive sensing (CS) has recently emerged as a powerful framework for acquiring sparse signals. The bulk of the CS literature has focused on the case where the acquired signal has a sparse or compressible representation in an orthonormal basis. In practice, however, there are many signals that cannot be sparsely represented or approximated using an orthonormal basis, but that do have sparse representations in a redundant dictionary. Standard results in CS can sometimes be extended to handle this case provided that the dictionary is sufficiently incoherent or well-conditioned, but these approaches fail to address the case of a truly redundant or overcomplete dictionary. In this paper we describe a variant of the iterative recovery algorithm CoSaMP for this more challenging setting. We utilize the D-RIP, a condition on the sensing matrix analogous to the well-known restricted isometry property. In contrast to prior work, the method and analysis are "signal-focused"; that is, they are oriented around recovering the signal rather than its dictionary coefficients. Under the assumption that we have a near-optimal scheme for projecting vectors in signal space onto the model family of candidate sparse signals, we provide provable recovery guarantees. Developing a practical algorithm that can provably compute the required near-optimal projections remains a significant open problem, but we include simulation results using various heuristics that empirically exhibit superior performance to traditional recovery algorithms

    Six ministry strategies for planting a seeker sensitive church

    Get PDF
    https://place.asburyseminary.edu/ecommonsatsdissertations/1108/thumbnail.jp

    1-Bit Matrix Completion

    Full text link
    In this paper we develop a theory of matrix completion for the extreme case of noisy 1-bit observations. Instead of observing a subset of the real-valued entries of a matrix M, we obtain a small number of binary (1-bit) measurements generated according to a probability distribution determined by the real-valued entries of M. The central question we ask is whether or not it is possible to obtain an accurate estimate of M from this data. In general this would seem impossible, but we show that the maximum likelihood estimate under a suitable constraint returns an accurate estimate of M when ||M||_{\infty} <= \alpha, and rank(M) <= r. If the log-likelihood is a concave function (e.g., the logistic or probit observation models), then we can obtain this maximum likelihood estimate by optimizing a convex program. In addition, we also show that if instead of recovering M we simply wish to obtain an estimate of the distribution generating the 1-bit measurements, then we can eliminate the requirement that ||M||_{\infty} <= \alpha. For both cases, we provide lower bounds showing that these estimates are near-optimal. We conclude with a suite of experiments that both verify the implications of our theorems as well as illustrate some of the practical applications of 1-bit matrix completion. In particular, we compare our program to standard matrix completion methods on movie rating data in which users submit ratings from 1 to 5. In order to use our program, we quantize this data to a single bit, but we allow the standard matrix completion program to have access to the original ratings (from 1 to 5). Surprisingly, the approach based on binary data performs significantly better
    • …
    corecore