13 research outputs found
Hosi hi twele vusi wana
Workshop Mass hymn with drum and rattle accompaniment
Recommended from our members
A randomized Phase 2b efficacy study in patients with seizure episodes with a predictable pattern using Staccato ® alprazolam for rapid seizure termination
Integration of quantitative imaging biomarkers in clinical trials for MR-guided radiotherapy: Conceptual guidance for multicentre studies from the MR-Linac Consortium Imaging Biomarker Working Group
Quantitative imaging biomarkers (QIBs) derived from MRI techniques have the potential to be used for the personalised treatment of cancer patients. However, large-scale data are missing to validate their added value in clinical practice. Integrated MRI-guided radiotherapy (MRIgRT) systems, such as hybrid MRI-linear accelerators, have the unique advantage that MR images can be acquired during every treatment session. This means that high-frequency imaging of QIBs becomes feasible with reduced patient burden, logistical challenges, and costs compared to extra scan sessions. A wealth of valuable data will be collected before and during treatment, creating new opportunities to advance QIB research at large. The aim of this paper is to present a roadmap towards the clinical use of QIBs on MRIgRT systems. The most important need is to gather and understand how the QIBs collected during MRIgRT correlate with clinical outcomes. As the integrated MRI scanner differs from traditional MRI scanners, technical validation is an important aspect of this roadmap. We propose to integrate technical validation with clinical trials by the addition of a quality assurance procedure at the start of a trial, the acquisition of in vivo test-retest data to assess the repeatability, as well as a comparison between QIBs from MRIgRT systems and diagnostic MRI systems to assess the reproducibility. These data can be collected with limited extra time for the patient. With integration of technical validation in clinical trials, the results of these trials derived on MRIgRT systems will also be applicable for measurements on other MRI systems
Recommended from our members
Extranodal Marginal Zone Lymphomas Show Recurrent Mutations in DNA Repair Genes, Cancer-Associated Proliferative Signaling and NOTCH1 Signaling Pathways, Regardless of Anatomic Site
Frequent detection but lack of infectivity of SARS-CoV-2 RNA in presymptomatic, infected blood donor plasma.
Respiratory viruses such as influenza do not typically cause viremia; however, SARS-CoV-2 has been detected in the blood of COVID-19 patients with mild and severe symptoms. Detection of SARS-CoV-2 in blood raises questions about its role in pathogenesis as well as transfusion safety concerns. Blood donor reports of symptoms or a diagnosis of COVID-19 after donation (post-donation information, PDI) preceded or coincided with increased general population COVID-19 mortality. Plasma samples from 2,250 blood donors who reported possible COVID-19-related PDI were tested for the presence of SARS-CoV-2 RNA. Detection of RNAemia peaked at 9%-15% of PDI donors in late 2020 to early 2021 and fell to approximately 4% after implementation of widespread vaccination in the population. RNAemic donors were 1.2- to 1.4-fold more likely to report cough or shortness of breath and 1.8-fold more likely to report change in taste or smell compared with infected donors without detectable RNAemia. No infectious virus was detected in plasma from RNAemic donors; inoculation of permissive cell lines produced less than 0.7-7 plaque-forming units (PFU)/mL and in susceptible mice less than 100 PFU/mL in RNA-positive plasma based on limits of detection in these models. These findings suggest that blood transfusions are highly unlikely to transmit SARS-CoV-2 infection
Recommended from our members
Mutations of ATM Confer a Risk of Inferior Survival in Patients with TP53- wild Type Mantle Cell Lymphoma
Recommended from our members
Whole Exome and Transcriptome Sequencing in 1042 Cases Reveals Distinct Clinically Relevant Genetic Subgroups of Follicular Lymphoma
Follicular Lymphoma (FL) is the most common indolent lymphoma derived from light zone germinal center B cells and characterized by a t(14;18) translocation resulting in upregulation of BCL2 in over 80% of cases. This translocation alone is not sufficient for tumorogenesis, and must be combined with additional genetic mutations to transform B cells. FL is incurable and the disease course can be highly varied, with survival ranging from a few months to decades following diagnosis and treatment with standard chemoimmunotherapy. The heterogeneity of FL poses major challenges to identifying the association of genetic alterations and clinical outcome. Current WHO guidelines recommend establishing grade for each FL case with grade 3 thought to be more aggressive than 1 and 2. The genetic basis and clinical implications of grade in FL are unclear. Recent sequencing studies have identified many genes found to be recurrently mutated in FL including KMT2D and CREBBP. However, the degree to which genetic alterations cooperate with each other or contribute to clinical outcome is unclear. Based on the observed mutational rates in follicular lymphoma, we estimated 900 cases were needed to comprehensively delineate the genetic alterations that underlie histologic grade and clinical outcome. Accordingly, we enrolled a cohort of 1042 patients with newly diagnosed FL. All treated patients received rituximab-containing standard regimens. To go beyond the identification of gene-coding events, we developed a very large panel of 110 Mbp covering exonic (~40Mbp) and non-exonic regions (~70Mbp) of interest to enable a wide range of genomic analysis including mutation calling in both coding and non-coding regions, rearrangement detection, viral identification, and copy number analysis. In addition to the whole exome, we extended coverage to include introns, promoters, and untranslated regions of all known driver genes in cancer. We included the entirety of the immunoglobulin loci, T-cell receptor loci and CD3 loci to detect clonotypes and rearrangements. We also included lymphoma-relevant long non-coding RNAs, microRNAs, enhancers, and breakpoint-prone regions. For viral detection, we targeted the genomes of eight cancer-related viruses: Epstein-Barr virus, human papillomavirus, human immunodeficiency virus, hepatitis B, hepatitis C, Kaposi's sarcoma-associated herpesvirus, human T-lymphotropic virus, and Merkel cell polyomavirus. In addition, to enable high resolution identification of copy number variation (CNV) calls, the entire genome was tiled with probes spaced 10kb apart. DNA and RNA were extracted from all tumors and their paired normal samples, prepared into DNA and RNA sequencing libraries and subjected to sequencing on the Illumina platform to a targeted coverage of 150X. Somatic events were identified and further filtered to identify driver events in both coding and non-coding regions. FLs demonstrated a significant degree of genetic heterogeneity with over 100 genes mutated with a frequency of at least 2%. Nearly 100% of FL cases had a mutation in at least one chromatin-modifying gene. The most frequently mutated genes in follicular lymphoma were KMT2D, BCL2, IGLL5 and CREBBP. In addition, we identified frequent mutations in SPEN, BIRC6 and SETD2. To our knowledge, this is the first description of alterations in these genes in FL. Transcriptome analysis indicated a strong correlation between BIRC6 mutations and the previously described immune response 2 signature that is associated with a poor prognosis. We further performed unbiased clustering of genetic alterations in these FL cases. We identified a cluster that was specifically enriched in BCL6 and TP53 alterations and was strongly associated with grade 3 FLs which are predicted to have poorer outcomes with low intensity therapies. We further examined the genetic profiles of 1001 DLBCLs in comparison to this cohort of FLs. Our data indicate a continuum of highly overlapping genetic alterations with DLBCL displaying more complex patterns that included alterations in MYC, TP53 and CDKN2A (mainly copy number losses), indicating shared pathogenetic mechanisms underlying FL and DLBCL, particularly those germinal center B cell origin. Disclosures Koff: Burroughs Wellcome Fund: Research Funding; V Foundation: Research Funding; Lymphoma Research Foundation: Research Funding; American Association for Cancer Research: Research Funding. Leppä:Roche: Honoraria, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees. Gang:ROCHE: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Hsi:Abbvie: Research Funding; Eli Lilly: Research Funding; Cleveland Clinic&Abbvie Biotherapeutics Inc: Patents & Royalties: US8,603,477 B2; Jazz: Consultancy. Flowers:AbbVie: Consultancy, Research Funding; Denovo Biopharma: Consultancy; BeiGene: Consultancy, Research Funding; Burroughs Wellcome Fund: Research Funding; Eastern Cooperative Oncology Group: Research Funding; National Cancer Institute: Research Funding; V Foundation: Research Funding; Optimum Rx: Consultancy; Millenium/Takeda: Research Funding; TG Therapeutics: Research Funding; Gilead: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Karyopharm: Consultancy; AstraZeneca: Consultancy; Pharmacyclics/Janssen: Consultancy, Research Funding; Spectrum: Consultancy; Bayer: Consultancy; Acerta: Research Funding; Genentech, Inc./F. Hoffmann-La Roche Ltd: Consultancy, Research Funding. Neff:Enzyvant: Consultancy; EUSA Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees. Fedoriw:Alexion Pharmaceuticals: Other: Consultant and Speaker. Reddy:Genentech: Research Funding; BMS: Consultancy, Research Funding; Celgene: Consultancy; KITE Pharma: Consultancy; Abbvie: Consultancy. Mason:Sysmex: Honoraria. Behdad:Loxo-Bayer: Membership on an entity's Board of Directors or advisory committees; Thermo Fisher: Membership on an entity's Board of Directors or advisory committees; Pfizer: Other: Speaker. Burton:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel; Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees. Dave:Data Driven Bioscience: Equity Ownership