3 research outputs found

    Frontline Mongolian Healthcare Professionals and Adverse Mental Health Conditions During the Peak of COVID-19 Pandemic

    Get PDF
    Background: The relatively young and inexperienced healthcare professionals in Mongolia faced with an unprecedent service demand in response to the COVID-19 pandemic. Due to the small size of the healthcare workforce the Mongolian Health Ministry had no choice but to mandate continuous and long workhours from the healthcare workforce. Many of the healthcare professionals exhibited signs and symptoms of mental health disorders. This study aimed to discern the prevalence various mental health concerns, i.e., depression, anxiety and stress, insomnia, and to discern the factors that increased susceptibility to mental health disorders among frontline healthcare professionals providing healthcare services for COVID-19 patients in Mongolia. Methods: A Cross-sectional research design was implemented. We collected data from 965 healthcare professional, randomly selected from 18 government hospitals, in four regions of Mongolia. Data were collected using the Depression Anxiety Stress-21, the General Self-Efficacy Scale, and the Insomnia Severity Index instruments. We constructed the scale of Pandemic Response Symptoms (PaReSy) which captured stress, depression, and anxiety. Data were analyzed using descriptive statistics, Kruskal–Wallis statistical test and multinominal logistic regression analysis. Results: Prevalence of depression (52.3%, CI 95%: 49.1–55.5%), anxiety (70.2%, CI 95%: 67.2–73.0%), and stress (35.8%, CI 95%: 32.7–38.9%) was documented among Mongolian healthcare professionals. Perception of self-efficacy reduced susceptibility to PaReSy either at mild/moderate (OR = 0.948, 95% CI = 0.911–0.988, P = 0.011) or severe/extremely severe level (OR = 0.911, 95% CI = 0.861–0.963, P = 0.001). Within each stratum of insomnia, the risk of experiencing PaReSy increased almost linearly both in the category of mild/moderate PaReSy and in the category of severe/extremely severe PaReSy. Conclusion: Improving self-efficacy and sleeping quality can assist healthcare workers to manage depression, anxiety, and stress. Findings provide important evidence to implement measures and strategies to assist healthcare professionals in low- and middle-income countries to constructively address their mental health concerns and needs

    Antibacterial activity of Arthrobacter strains isolated from Great Gobi A Strictly Protected Area, Mongolia

    Get PDF
    Desert soil hosts many microorganisms, whose activities are essential from an ecological viewpoint. Moreover, they are of great anthropic interest. The knowledge of extreme environments microbiomes may be beneficial for agriculture, technology, and human health. In this study, 11 Arthrobacter strains from topsoil samples collected from the Great Gobi A Strictly Protected Area in the Gobi Desert, were characterized by a combination of different techniques. The phylogenetic analysis, performed using their 16S rDNA sequences and the most similar Arthrobacter sequences found in databases, revealed that most of them were close to A. crystallopoietes, while others joined a sister group to the clade formed by A. humicola, A. pascens, and A. oryzae. The resistance of each strain to different antibiotics, heavy -metals, and NaCl was also tested as well as the inhibitory potential against human pathogens (i.e., Burkholderia ssp., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus ssp.) via cross -streaking, to check the production of metabolites with antimicrobial activity. Data obtained revealed that all strains were resistant to heavy metals and were able to strongly interfere with the growth of many of the human pathogens tested. The volatile organic compounds (VOCs) profile of the 11 Arthrobacter strains was also analyzed. A total of 16 different metabolites were found, some of which were already known for having an inhibitory action against different Grampositive and Gram-negative bacteria. Isolate MS -3A13, producing the highest quantity of VOCs, is the most efficient against Burkholderia cepacia complex (Bcc), K. pneumoniae, and coagulase-negative Staphylococci (CoNS) strains. This work highlights the importance of understanding microbial populations' phenotypical characteristics and dynamics in extreme environments to uncover the antimicrobial potential of new species and strains

    The Great Gobi A Strictly Protected Area: Characterization of Soil Bacterial Communities from Four Oases

    No full text
    Understanding how microbial communities survive in extreme environmental pressure is critical for interpreting ecological patterns and microbial diversity. Great Gobi A Strictly Protected Area represents an intriguing model for studying the bacterial community since it is a protected and intact wild area of the Mongolian desert. In this work, the composition of a bacterial community of the soil from four oases was characterized by extracting total DNA and sequencing through the Illumina NovaSeq platform. In addition, the soil’s chemical and physical properties were determined, and their influence on shaping the microbial communities was evaluated. The results showed a high variability of bacterial composition among oases. Moreover, combining specific chemical and physical parameters significantly shapes the bacterial community among oases. Data obtained suggested that the oases were highly variable in physiochemical parameters and bacterial communities despite the similar extreme climate conditions. Moreover, core functional microbiome were constituted by aerobic chemoheterotrophy and chemoheterotrophy, mainly contributed by the most abundant bacteria, such as Actinobacteriota, Pseudomonadota, and Firmicutes. This result supposes a metabolic flexibility for sustaining life in deserts. Furthermore, as the inhabitants of the extreme regions are likely to produce new chemical compounds, isolation of key taxa is thus encouraged
    corecore