37 research outputs found
Noninvasive Analysis of Synthetic and Decellularized Scaffolds for Heart Valve Tissue Engineering
Microcomputed tomography (mu-CT) is a nondestructive, high-resolution, three-dimensional method of analyzing objects. The aim of this study was to evaluate the feasibility of using mu-CT as a noninvasive method of evaluation for tissue-engineering applications. The polyurethane aortic heart valve scaffold was produced using a spraying technique. Cryopreserved/thawed homograft and biological heart valve were decellularized using a detergent mixture. Human endothelial cells and fibroblasts were derived from saphenous vein segments and were verified by immunocytochemistry. Heart valves were initially seeded with fibroblasts followed by colonization with endothelial cells. Scaffolds were scanned by a mu-CT scanner before and after decellularization as well as after cell seeding. Successful colonization was additionally determined by scanning electron microscopy (SEM) and immunohistochemistry (IHC). Microcomputed tomography accurately visualized the complex geometry of heart valves. Moreover, an increase in the total volume and wall thickness as well as a decrease in total surface was demonstrated after seeding. A confluent cell distribution on the heart valves after seeding was confirmed by SEM and IHC. We conclude that mu-CT is a new promising noninvasive method for qualitative and quantitative analysis of tissue-engineering processes. ASAIO Journal 2013;59:169-177
Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering
Background: Tissue engineering represents a promising new method for treating heart valve diseases. The aim of this study was evaluate the importance of conditioning procedures of tissue engineered polyurethane heart valve prostheses by the comparison of static and dynamic cultivation methods. Methods: Human vascular endothelial cells (ECs) and fibroblasts (FBs) were obtained from saphenous vein segments. Polyurethane scaffolds (n = 10) were primarily seeded with FBs and subsequently with ECs, followed by different cultivation methods of cell layers (A: static, B: dynamic). Group A was statically cultivated for 6 days. Group B was exposed to low flow conditions (t(1)=3 days at 750 ml/min, t(2)=2 days at 1100 ml/min) in a newly developed conditioning bioreactor. Samples were taken after static and dynamic cultivation and were analyzed by scanning electron microscopy (SEM), immunohistochemistry (IHC), and real time polymerase chain reaction (RT-PCR). Results: SEM results showed a high density of adherent cells on the surface valves from both groups. However, better cell distribution and cell behavior was detected in Group B. IHC staining against CD31 and TE-7 revealed a positive reaction in both groups. Higher expression of extracellular matrix (ICAM, Collagen IV) was observed in Group B. RT-PCR demonstrated a higher expression of inflammatory Cytokines in Group B. Conclusion: While conventional cultivation method can be used for the development of tissue engineered heart valves. Better results can be obtained by performing a conditioning step that may improve the tolerance of cells to shear stress. The novel pulsatile bioreactor offers an adequate tool for in vitro improvement of mechanical properties of tissue engineered cardiovascular prostheses
An in-silico approach to meniscus tissue regeneration: Modeling, numerical simulation, and experimental analysis
We develop a model the dynamics of human mesenchymal stem cells (hMSCs) and
chondrocytes evolving in a nonwoven polyethylene terephtalate (PET) scaffold
impregnated with hyaluron and supplied with a differentiation medium. The
scaffold and the cells are assumed to be contained in a bioreactor with fluid
perfusion. The differentiation of hMSCs into chondrocytes favors the production
of extracellular matrix (ECM) and is influenced by fluid stress. The model
takes deformations of ECM and PET scaffold into account. The scaffold structure
is explicitly included by statistical assessment of the fibre distribution from
CT images. The effective macroscopic equations are obtained by appropriate
upscaling from dynamics on lower (microscopic and mesoscopic) scales and
feature in the motility terms an explicit cell diffusion tensor encoding the
assessed anisotropic scaffold structure. Numerical simulations show its
influence on the overall cell and tissue dynamics
Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering
Background: Tissue engineering represents a promising new method for treating heart valve diseases. The aim of this study was evaluate the importance of conditioning procedures of tissue engineered polyurethane heart valve prostheses by the comparison of static and dynamic cultivation methods. Methods: Human vascular endothelial cells (ECs) and fibroblasts (FBs) were obtained from saphenous vein segments. Polyurethane scaffolds (n = 10) were primarily seeded with FBs and subsequently with ECs, followed by different cultivation methods of cell layers (A: static, B: dynamic). Group A was statically cultivated for 6 days. Group B was exposed to low flow conditions (t(1)=3 days at 750 ml/min, t(2)=2 days at 1100 ml/min) in a newly developed conditioning bioreactor. Samples were taken after static and dynamic cultivation and were analyzed by scanning electron microscopy (SEM), immunohistochemistry (IHC), and real time polymerase chain reaction (RT-PCR). Results: SEM results showed a high density of adherent cells on the surface valves from both groups. However, better cell distribution and cell behavior was detected in Group B. IHC staining against CD31 and TE-7 revealed a positive reaction in both groups. Higher expression of extracellular matrix (ICAM, Collagen IV) was observed in Group B. RT-PCR demonstrated a higher expression of inflammatory Cytokines in Group B. Conclusion: While conventional cultivation method can be used for the development of tissue engineered heart valves. Better results can be obtained by performing a conditioning step that may improve the tolerance of cells to shear stress. The novel pulsatile bioreactor offers an adequate tool for in vitro improvement of mechanical properties of tissue engineered cardiovascular prostheses
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by âERDF A way of making Europeâ. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
Synthese von alkinâ und azidfunktionalisierten Glycosphingolipiden und ihre FluoreszenzanfĂ€rbung in Zellmembranen ĂŒber bioorthogonale Ligationsreaktionen
Glycosphingolipide sind ein wichtiger Bestandteil von Zellmembranen und spielen eine entscheidende Rolle bei vielen biologischen Prozessen. Im Zusammenspiel mit verschiedenen Membranproteinen sind sie an der Bildung sogenannter MembranmikrodomĂ€nen, auch Lipid Rafts genannt, beteiligt und tragen dadurch wesentlich zur Organisation von membranassoziierten VorgĂ€ngen bei. Die vorliegende Arbeit beschĂ€ftigt sich mit der Entwicklung einer Methode zur AnfĂ€rbung und Visualisierung von Glycosphingolipiden in Membranen von lebenden Zellen. Dazu wurden Analoga dieser Lipide hergestellt, die eine Azid- oder Alkingruppe enthalten und nach Verabreichung an Zellen ĂŒber eine bioorthogonale Alkin-Azid-Cycloaddition mit einem Fluoreszenzfarbstoff ligiert werden konnten. Dies ermöglichte die Untersuchung der Lipidverteilung per Fluoreszenzmikroskopie. Es konnte gezeigt werden, dass sich einige der hergestellten alkin- und azidfunktionalisierten Glycosphingolipide sehr gut als Membranmarker eignen und zur Untersuchungen von LipidmikrodomĂ€nen verwendet werden können
Melt-Spun Fibers for Textile Applications
Textiles have a very long history, but they are far from becoming outdated. They gain new importance in technical applications, and man-made fibers are at the center of this ongoing innovation. The development of high-tech textiles relies on enhancements of fiber raw materials and processing techniques. Today, melt spinning of polymers is the most commonly used method for manufacturing commercial fibers, due to the simplicity of the production line, high spinning velocities, low production cost and environmental friendliness. Topics covered in this review are established and novel polymers, additives and processes used in melt spinning. In addition, fundamental questions regarding fiber morphologies, structure-property relationships, as well as flow and draw instabilities are addressed. Multicomponent melt-spinning, where several functionalities can be combined in one fiber, is also discussed. Finally, textile applications and melt-spun fiber specialties are presented, which emphasize how ongoing research efforts keep the high value of fibers and textiles alive