34 research outputs found

    Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation

    Get PDF
    Calcium dynamics control synaptic transmission. Calcium triggers synaptic vesicle fusion, determines release probability, modulates vesicle recycling, participates in long-term plasticity and regulates cellular metabolism. Mitochondria, the main source of cellular energy, serve as calcium signaling hubs. Mitochondrial calcium transients are primarily determined by the balance between calcium influx, mediated by the mitochondrial calcium uniporter (MCU), and calcium efflux through the sodium/lithium/calcium exchanger (NCLX). We identified a human recessive missense SLC8B1 variant that impairs NCLX activity and is associated with severe mental retardation. On this basis, we examined the effect of deleting NCLX in mice on mitochondrial and synaptic calcium homeostasis, synaptic activity, and plasticity. Neuronal mitochondria exhibited basal calcium overload, membrane depolarization, and a reduction in the amplitude and rate of calcium influx and efflux. We observed smaller cytoplasmic calcium transients in the presynaptic terminals of NCLX-KO neurons, leading to a lower probability of release and weaker transmission. In agreement, synaptic facilitation in NCLX-KO hippocampal slices was enhanced. Importantly, deletion of NCLX abolished long term potentiation of Schaffer collateral synapses. Our results show that NCLX controls presynaptic calcium transients that are crucial for defining synaptic strength as well as short- and long-term plasticity, key elements of learning and memory processes. Stavsky et al. examined the effects of deleting the mitochondrial sodium/lithium/calcium exchanger, NCLX, on mitochondrial and synaptic calcium homeostasis, synaptic activity, and plasticity in mice. Having identified a human mutation that impairs NCLX activity and is associated with mental retardation, they show that NCLX is crucial for defining synaptic strength and plasticity, which are pivotal elements of learning and memory

    The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction

    Get PDF
    Purpose: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. Methods: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. Results: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. Conclusion: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported

    Delineation of a 2q deletion in a girl with dysmorphic features and epilepsy.

    No full text

    Multiplex-FISH for pre- and postnatal diagnostic applications.

    Get PDF
    For >3 decades, Giemsa banding of metaphase chromosomes has been the standard karyotypic analysis for pre- and postnatal diagnostic applications. However, marker chromosomes or structural abnormalities are often encountered that cannot be deciphered by G-banding alone. Here we describe the use of multiplex-FISH (M-FISH), which allows the visualization of the 22 human autosomes and the 2 sex chromosomes, in 24 different colors. By M-FISH, the euchromatin in marker chromosomes could be readily identified. In cases of structural abnormalities, M-FISH identified translocations and insertions or demonstrated that the rearranged chromosome did not contain DNA material from another chromosome. In these cases, deleted or duplicated regions were discerned either by chromosome-specific multicolor bar codes or by comparative genomic hybridization. In addition, M-FISH was able to identify cryptic abnormalities in patients with a normal G-karyotype. In summary, M-FISH is a reliable tool for diagnostic applications, and results can be obtained in </=24 h. When M-FISH is combined with G-banding analysis, maximum cytogenetic information is provided

    Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation.

    No full text
    Calcium dynamics control synaptic transmission. Calcium triggers synaptic vesicle fusion, determines release probability, modulates vesicle recycling, participates in long-term plasticity and regulates cellular metabolism. Mitochondria, the main source of cellular energy, serve as calcium signaling hubs. Mitochondrial calcium transients are primarily determined by the balance between calcium influx, mediated by the mitochondrial calcium uniporter (MCU), and calcium efflux through the sodium/lithium/calcium exchanger (NCLX). We identified a human recessive missense SLC8B1 variant that impairs NCLX activity and is associated with severe mental retardation. On this basis, we examined the effect of deleting NCLX in mice on mitochondrial and synaptic calcium homeostasis, synaptic activity, and plasticity. Neuronal mitochondria exhibited basal calcium overload, membrane depolarization, and a reduction in the amplitude and rate of calcium influx and efflux. We observed smaller cytoplasmic calcium transients in the presynaptic terminals of NCLX-KO neurons, leading to a lower probability of release and weaker transmission. In agreement, synaptic facilitation in NCLX-KO hippocampal slices was enhanced. Importantly, deletion of NCLX abolished long term potentiation of Schaffer collateral synapses. Our results show that NCLX controls presynaptic calcium transients that are crucial for defining synaptic strength as well as short- and long-term plasticity, key elements of learning and memory processes

    Author Correction: Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation

    No full text
    The original version of this Article contained an error in the spelling of the author Fabiana Perocchi, which was incorrectly given as Fabiana Perrochi. This has now been corrected in both the PDF and HTML versions of the Article
    corecore