119 research outputs found
Quasi-ballistic transport in HgTe quantum-well nanostructures
The transport properties of micrometer scale structures fabricated from
high-mobility HgTe quantum-wells have been investigated. A special photoresist
and Ti masks were used, which allow for the fabrication of devices with
characteristic dimensions down to 0.45 m. Evidence that the transport
properties are dominated by ballistic effects in these structures is presented.
Monte Carlo simulations of semi-classical electron trajectories show good
agreement with the experiment.Comment: 3 pages, 3 figures; minor revisions: replaced "inelastic mean free
path" with "transport mean free path"; corrected typing errors; restructered
most paragraphs for easier reading; accepted for publication in AP
On the Flux-Across-Surfaces Theorem
The quantum probability flux of a particle integrated over time and a distant
surface gives the probability for the particle crossing that surface at some
time. We prove the free Flux-Across-Surfaces Theorem, which was conjectured by
Combes, Newton and Shtokhamer, and which relates the integrated quantum flux to
the usual quantum mechanical formula for the cross section. The integrated
quantum flux is equal to the probability of outward crossings of surfaces by
Bohmian trajectories in the scattering regime.Comment: 13 pages, latex, 1 figure, very minor revisions, to appear in Letters
in Mathematical Physics, Vol. 38, Nr.
Bohmian transmission and reflection dwell times without trajectory sampling
Within the framework of Bohmian mechanics dwell times find a straightforward
formulation. The computation of associated probabilities and distributions
however needs the explicit knowledge of a relevant sample of trajectories and
therefore implies formidable numerical effort. Here a trajectory free
formulation for the average transmission and reflection dwell times within
static spatial intervals [a,b] is given for one-dimensional scattering
problems. This formulation reduces the computation time to less than 5% of the
computation time by means of trajectory sampling.Comment: 14 pages, 7 figures; v2: published version, significantly revised and
shortened (former sections 2 and 3 omitted, appendix A added, simplified
mathematics
Bohmian arrival time without trajectories
The computation of detection probabilities and arrival time distributions
within Bohmian mechanics in general needs the explicit knowledge of a relevant
sample of trajectories. Here it is shown how for one-dimensional systems and
rigid inertial detectors these quantities can be computed without calculating
any trajectories. An expression in terms of the wave function and its spatial
derivative, both restricted to the boundary of the detector's spacetime volume,
is derived for the general case, where the probability current at the
detector's boundary may vary its sign.Comment: 20 pages, 12 figures; v2: reference added, extended introduction,
published versio
Ambiguities of arrival-time distributions in quantum theory
We consider the definition that might be given to the time at which a
particle arrives at a given place, both in standard quantum theory and also in
Bohmian mechanics. We discuss an ambiguity that arises in the standard theory
in three, but not in one, spatial dimension.Comment: LaTex, 12 pages, no figure
A quantitative theory-versus-experiment comparison for the intense laser dissociation of H2+
A detailed theory-versus-experiment comparison is worked out for H
intense laser dissociation, based on angularly resolved photodissociation
spectra recently recorded in H.Figger's group. As opposite to other
experimental setups, it is an electric discharge (and not an optical
excitation) that prepares the molecular ion, with the advantage for the
theoretical approach, to neglect without lost of accuracy, the otherwise
important ionization-dissociation competition. Abel transformation relates the
dissociation probability starting from a single ro-vibrational state, to the
probability of observing a hydrogen atom at a given pixel of the detector
plate. Some statistics on initial ro-vibrational distributions, together with a
spatial averaging over laser focus area, lead to photofragments kinetic
spectra, with well separated peaks attributed to single vibrational levels. An
excellent theory-versus-experiment agreement is reached not only for the
kinetic spectra, but also for the angular distributions of fragments
originating from two different vibrational levels resulting into more or less
alignment. Some characteristic features can be interpreted in terms of basic
mechanisms such as bond softening or vibrational trapping.Comment: submitted to PRA on 21.05.200
The Quantum Spin Hall Effect: Theory and Experiment
The search for topologically non-trivial states of matter has become an
important goal for condensed matter physics. Recently, a new class of
topological insulators has been proposed. These topological insulators have an
insulating gap in the bulk, but have topologically protected edge states due to
the time reversal symmetry. In two dimensions the helical edge states give rise
to the quantum spin Hall (QSH) effect, in the absence of any external magnetic
field. Here we review a recent theory which predicts that the QSH state can be
realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of
the quantum well, the band structure changes from a normal to an "inverted"
type at a critical thickness . We present an analytical solution of the
helical edge states and explicitly demonstrate their topological stability. We
also review the recent experimental observation of the QSH state in
HgTe/(Hg,Cd)Te quantum wells. We review both the fabrication of the sample and
the experimental setup. For thin quantum wells with well width
nm, the insulating regime shows the conventional behavior of vanishingly small
conductance at low temperature. However, for thicker quantum wells ( nm), the nominally insulating regime shows a plateau of residual
conductance close to . The residual conductance is independent of the
sample width, indicating that it is caused by edge states. Furthermore, the
residual conductance is destroyed by a small external magnetic field. The
quantum phase transition at the critical thickness, nm, is also
independently determined from the occurrence of a magnetic field induced
insulator to metal transition.Comment: Invited review article for special issue of JPSJ, 32 pages. For
higher resolution figures see official online version when publishe
- …