5 research outputs found

    Development of a Novel Low-Cost Exoscope to Expand Access to Microneurosurgical Care in Low- and Middle-Income Countries

    No full text
    Background: Less than a quarter of the world population has access to microneurosurgical care within a range of 2 hours. We introduce a simplified exoscope system to achieve magnification, illumination, and video recording in low-resource settings. Methods: We combined an industrial microscope tube, a heavy-duty support arm, a wide-field c-mount digital microscope camera, and a light-emitting diode ring light. All parts were sterilized with ethylene oxide. We performed 13 spinal and 3 cranial surgeries with the help of the low-budget exoscope. Results: The average preoperative setup time was 12.8 minutes. The exoscope provided similar magnification and illumination like a conventional binocular microscope. It allowed operating in a comfortable posture. The field of vision ranged from 30 mm–60 mm. The surgical field was captured by a 16-megapixel two-dimensional camera and projected to a 55-inch high-definition television screen in real time. Image quality was similar to that of a conventional microscope although our exoscope lacked stereoscopic view. Adjusting camera position and angle was time-consuming. Thus, the benefit of the exoscope was most notable in spine surgeries where the camera remained static for most of the time. The total cost of the exoscope was approximately U.S. $ 750. Conclusions: Our low-budget exoscope offers similar image quality, magnification, and illumination like a conventional binocular microscope. It may thus help expand access to neurosurgical care worldwide. Users may face difficulty adapting to the lack of depth perception in the beginning. Prospective studies are needed to assess its usability and effectiveness compared to the microscope. © 2022 Elsevier Inc

    Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene.

    Full text link
    Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene
    corecore