130 research outputs found

    Observation of the cluster spin-glass phase in La_{2-x}Sr_{x}CuO_{4} by anelastic spectroscopy

    Full text link
    An increase of the acoustic absorption is found in La_{2-x}Sr_{x}CuO_{4} (x = 0.019, 0.03 and 0.06) close to the temperatures at which freezing of the spin fluctuations in antiferromagnetic-correlated clusters is expected to occur. The acoustic absorption is attributed to changes of the sizes of the quasi-frozen clusters induced by the vibration stress through magnetoelastic coupling.Comment: LaTeX, 2 PostScript figures, submitted to Phys. Rev.

    Determination of the high-pressure crystal structure of BaWO4 and PbWO4

    Full text link
    We report the results of both angle-dispersive x-ray diffraction and x-ray absorption near-edge structure studies in BaWO4 and PbWO4 at pressures of up to 56 GPa and 24 GPa, respectively. BaWO4 is found to undergo a pressure-driven phase transition at 7.1 GPa from the tetragonal scheelite structure (which is stable under normal conditions) to the monoclinic fergusonite structure whereas the same transition takes place in PbWO4 at 9 GPa. We observe a second transition to another monoclinic structure which we identify as that of the isostructural phases BaWO4-II and PbWO4-III (space group P21/n). We have also performed ab initio total energy calculations which support the stability of this structure at high pressures in both compounds. The theoretical calculations further find that upon increase of pressure the scheelite phases become locally unstable and transform displacively into the fergusonite structure. The fergusonite structure is however metastable and can only occur if the transition to the P21/n phases were kinetically inhibited. Our experiments in BaWO4 indicate that it becomes amorphous beyond 47 GPa.Comment: 46 pages, 11 figures, 3 table

    High-pressure structural study of the scheelite tungstates CaWO4 and SrWO4

    Full text link
    Angle-dispersive x-ray diffraction (ADXRD) and x-ray absorption near edge structure (XANES) measurements have been performed in the AWO4 tungstates CaWO4 and SrWO4 under high pressure up to approximately 20 GPa. Similar phase transitions and phase transition pressures have been observed for both tungstates using the two techniques in the studied pressure range. Both materials are found to undergo a pressure-induced scheelite-to-fergusonite phase transition under sufficiently hydrostatic conditions. Our results are compared to those found previously in the literature and supported by ab initio total energy calculations. From the total energy calculations we have also predicted a second phase transition from the fergusonite structure to a new structure identified as Cmca. Finally, a linear relationship between the charge density in the AO8 polyhedra of ABO4 scheelite-related structures and the bulk modulus is discussed and used to predict the bulk modulus of other materials, like zircon.Comment: 52 pages, 9 figure, 4 table

    Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts

    Get PDF
    The catalytic dehydration of 1,3-butanediol into butadiene was investigated over various aluminosilicates with different SiO2/Al2O3 ratios and pore architectures. A correlation between the catalytic performance and the total number of acid sites and acid strength was established, with a better performance for lower acid site densities as inferred from combined NH3-TPD, pyridine adsorption and 27Al-NMR MAS spectroscopy. The presence of native Brønsted acid sites of medium strength was correlated to the formation of butadiene. A maximum butadiene yield of 60% was achieved at 300 °C over H-ZSM-5 with a SiO2/Al2O3 ratio of 260 with the simultaneous formation of propylene at a BD/propylene selectivity ratio of 2.5. This catalyst further exhibited a slight deactivation during a 102 h run with a decrease in the conversion from 100% to 80% due to coke deposition as evidenced by XPS and TGA-MS, resulting in a 36% loss of the specific surface area

    Surface and Structure Characterization of Some Perovskite-type Powders To Be Used As Combustion Catalysts

    No full text
    Some perovskite-type transition-metal mixed oxide powders active in the combustion catalysis, with formulas LaMO(3) (M = Fe, Cr, Co, and Mn), have been prepared by different methods. Similarly, potential supports for combustion catalysts nearly isostructural with the above ones have been prepared, with compositions SrZrO3 and LaAlO3. Mixed phases with formulas Sr1-xLaxZr1-xMnxO3 have also been investigated. The bulk properties have been studied by XRD, far-IR spectroscopy, and DTA-TG analyses. Morphological properties have been determined by XRD, SEM, and surface area measurements. These phases crystallize after heating at 970 K (except LaFeO3, which is already crystalline after calcination at 770 K) with surface area ranging 10-20 m(2)/g. The solubility of LaMnO3 into SrZrO3 is limited to near 10%. Their surface properties have been investigated by IR spectroscopy that showed a predominantly basic surface character of all these solids
    corecore