2,204 research outputs found

    Prevention of Chemotherapy-Induced Anemia and Thrombocytopenia by Constant Administration of Stem Cell Factor

    Get PDF
    Purpose: Chemotherapy-induced apoptosis of immature hematopoietic cells is a major cause of anemia and thrombocytopenia in cancer patients. Although hematopoietic growth factors such as erythropoietin and colony-stimulating factors cannot prevent the occurrence of drug-induced myelosuppression, stem cell factor (SCF) has been previously shown to protect immature erythroid and megakaryocytic cells in vitro from drug-induced apoptosis. However, the effect of SCF in vivo as a single myeloprotective agent has never been elucidated. Experimental Design: The ability of SCF to prevent the occurrence of chemotherapy-induced anemia and thrombocytopenia was tested in a mouse model of cisplatin-induced myelosuppression. To highlight the importance of maintaining a continuous antiapoptotic signal in immature hematopoietic cells, we compared two treatment schedules: in the first schedule, SCF administration was interrupted during chemotherapy treatment and resumed thereafter, whereas in the second schedule, SCF was administered without interruption for 7 days, including the day of chemotherapy treatment. Results: The administration of SCF to cisplatin-treated mice could preserve bone marrow integrity, inhibit apoptosis of erythroid and megakaryocytic precursors, prevent chemotherapy-induced anemia, and rapidly restore normal platelet production. Treatment with SCF increased the frequency of Bcl-2/Bcl-XL\u2013 positive bone marrow erythroid cells and sustained Akt activation in megakaryocytes. Myeloprotection was observed only when SCF was administered concomitantly with cisplatin and kept constantly present during the days following chemotherapy treatment. Conclusions: SCF treatment can prevent the occurrence of chemotherapy-induced anemia and thrombocytopenia in mice, indicating a potential use of this cytokine in the supportive therapy of cancer patients

    Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium

    Get PDF
    The mirror relative motion of a suspended Fabry-Perot cavity is studied in the frequency range 3-10 Hz. The experimental measurements presented in this paper, have been performed at the Low Frequency Facility, a high finesse optical cavity 1 cm long suspended to a mechanical seismic isolation system identical to that one used in the VIRGO experiment. The measured relative displacement power spectrum is compatible with a system at thermal equilibrium within its environmental. In the frequency region above 3 Hz, where seismic noise contamination is negligible, the measurement distribution is stationary and Gaussian, as expected for a system at thermal equilibrium. Through a simple mechanical model it is shown that: applying the fluctuation dissipation theorem the measured power spectrum is reproduced below 90 Hz and noise induced by external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    DINOSAUR FOOTPRINTS FROM THE GLEN ROSE FORMATION (PALUXY RIVER, DINOSAUR VALLEY STATE PARK, SOMERVELL COUNTY, TEXAS)

    Get PDF
    Dinosaur footprints are found in the Glen Rose Formation and other Lower Cretaceous stratigraphic units over much of central Texas (Pittman, 1989; Rogers, 2002; Farlow et al., 2006). Dinosaur tracks were discovered in the rocky bed of the Paluxy River, near the town of Glen Rose, Texas, early in the 20th Century (Jasinski, 2008; Farlow et al., 2012b). Ellis W. Shuler of Southern Methodist University did pioneering studies on the dinosaur tracks (Shuler 1917, 1935, 1937), and Langston (1974) summarized much of the early literature. What really put the dinosaur footprints of the Paluxy River on the map, though, were the herculean efforts that Roland T. Bird of the American Museum of Natural History made to secure trackway slabs for display at that institution and at the Texas Memorial Museum in Austin (Bird, 1985; Jasinski, 2008). In 1970 Dinosaur Valley State Park was created to protect the dinosaur footprints. This guidebook briefly summarizes earlier work, and also serves as an interim report of research of our group still in progress, concerned with identifying the makers of the Paluxy River footprints, and determining what those animals were up to as they made their tracks. We will offer some comparisons of the dinosaur tracks of the Glen Rose Formation with those from other ichnofaunas around the world. The last quarter-century has seen an explosive increase in the technical literature dealing with dinosaur footprints, and we cannot possibly cite all of the relevant studies. For the sake of brevity we will emphasize publications from the present century, and summary papers and books, as much as possible. Even with this restriction, however, the literature is so vast that the literature-cited “tail” of this report starts to wag the “dog” of the text

    A Unified Treatment of Kepler Occurrence to Trace Planet Evolution II: The Radius Cliff Formed by Atmospheric Escape

    Full text link
    The Kepler mission enabled us to look at the intrinsic population of exoplanets within our galaxy. In period-radius space, the distribution of the intrinsic population of planets contains structure that can trace planet formation and evolution history. The most distinctive feature in period-radius space is the radius cliff, a steep drop-off in occurrence between 2.542.5-4R_\oplus across all period ranges, separating the sub-Neptune population from the rarer Neptunes orbiting within 1 au. Following our earlier work to measure the occurrence rate of the Kepler population, we characterize the shape of the radius cliff as a function of orbital period (1030010-300 days) as well as insolation flux (9500S_\oplus -- 10S_\oplus). The shape of the cliff flattens at longer orbital periods, tracking the rising population of Neptune-sized planets. In insolation, however, the radius cliff is both less dramatic and the slope is more uniform. The difference in this feature between period- and insolation-space can be linked to the effect of EUV/X-ray versus bolometric flux in the planet's evolution. Models of atmospheric mass loss processes that predict the location and shape of the radius valley also predict the radius cliff. We compare our measured occurrence rate distribution to population synthesis models of photoevaporation and core-powered mass-loss in order to constrain formation and evolution pathways. We find that the models do not statistically agree with our occurrence distributions of the radius cliff in period- or insolation-space. Atmospheric mass loss that shapes the radius valley cannot fully explain the shape of the radius cliff.Comment: 15 pages, 9 figures, 2 tables. Accepted to A

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target
    corecore