199 research outputs found

    Electron transport through a quantum interferometer with side-coupled quantum dots: Green's function approach

    Full text link
    We study electron transport through a quantum interferometer with side-coupled quantum dots. The interferometer, threaded by a magnetic flux Ï•\phi, is attached symmetrically to two semi-infinite one-dimensional metallic electrodes. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics. Our results predict that under certain conditions this particular geometry exhibits anti-resonant states. These states are specific to the interferometric nature of the scattering and do not occur in conventional one-dimensional scattering problems of potential barriers. Most importantly we show that, such a simple geometric model can also be used as a classical XOR gate, where the two gate voltages, viz, VaV_a and VbV_b, are applied, respectively, in the two dots those are treated as the two inputs of the XOR gate. For Ï•=Ï•0/2\phi=\phi_0/2 (Ï•0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if one, and only one, of the inputs to the gate is high (1), while if both inputs are low (0) or both are high (1), a low output current (0) appears. It clearly demonstrates the XOR gate behavior and this aspect may be utilized in designing the electronic logic gate.Comment: 8 pages, 5 figure

    NAND gate response in a mesoscopic ring: An exact study

    Full text link
    NAND gate response in a mesoscopic ring threaded with a magnetic flux Ï•\phi is investigated by using Green's function formalism. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, VaV_a and VbV_b, are applied in one arm of the ring those are treated as the two inputs of the NAND gate. We use a simple tight-binding model to describe the system and numerically compute the conductance-energy and current-voltage characteristics as functions of the gate voltages, ring-to-electrode coupling strength and magnetic flux. Our theoretical study shows that, for Ï•=Ï•0/2\phi=\phi_0/2 (Ï•0=ch/e\phi_0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears if one or both the inputs to the gate are low (0), while if both the inputs to the gate are high (1), a low output current (0) appears. It clearly exhibits the NAND gate behavior and this feature may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    Delineating Bacteriostatic and Bactericidal Targets in Mycobacteria Using IPTG Inducible Antisense Expression

    Get PDF
    In order to identify novel high value antibacterial targets it is desirable to delineate whether the inactivation of the target enzyme will lead to bacterial death or stasis. This knowledge is particularly important in slow growing organisms, like mycobacteria, where most of the viable anti-tubercular agents are bactericidal. A bactericidal target can be identified through the conditional deletion or inactivation of the target gene at a relatively high cell number and subsequently following the time course of survival for the bacteria. A simple protocol to execute conditional inactivation of a gene is by antisense expression. We have developed a mycobacteria specific IPTG inducible vector system and monitored the effect of antisense inhibition of several known essential genes in mycobacteria by following their survival kinetics. By this method, we could differentiate between genes whose down regulation lead to bacteriostatic or bactericidal effect. Targets for standard anti-tubercular drugs like inhA for isoniazid, rpoB and C for rifampicin, and gyr A/B for flouroquinolones were shown to be bactericidal. In contrast targets like FtsZ behaved in a bacteriostatic manner. Induction of antisense expression in embB and ribosomal RNA genes, viz., rplJ and rpsL showed only a marginal growth inhibition. The specificity of the antisense inhibition was conclusively shown in the case of auxotrophic gene ilvB. The bactericidal activity following antisense expression of ilvB was completely reversed when the growth media was supplemented with the isoleucine, leucine, valine and pantothenate. Additionally, under these conditions the expression of several genes in branched chain amino acid pathway was severely suppressed indicating targeted gene inactivation

    Metal-insulator transition in an aperiodic ladder network: an exact result

    Full text link
    We show, in a completely analytical way, that a tight binding ladder network composed of atomic sites with on-site potentials distributed according to the quasiperiodic Aubry model can exhibit a metal-insulator transition at multiple values of the Fermi energy. For specific values of the first and second neighbor electron hopping, the result is obtained exactly. With a more general model, we calculate the two-terminal conductance numerically. The numerical results corroborate the analytical findings and yield a richer variety of spectrum showing multiple mobility edges.Comment: 4 pages, 3 figure

    Quantum transport through molecular wires

    Full text link
    We explore electron transport properties in molecular wires made of heterocyclic molecules (pyrrole, furan and thiophene) by using the Green's function technique. Parametric calculations are given based on the tight-binding model to describe the electron transport in these wires. It is observed that the transport properties are significantly influenced by (a) the heteroatoms in the heterocyclic molecules and (b) the molecule-to-electrodes coupling strength. Conductance (gg) shows sharp resonance peaks associated with the molecular energy levels in the limit of weak molecular coupling, while they get broadened in the strong molecular coupling limit. These resonances get shifted with the change of the heteroatoms in these heterocyclic molecules. All the essential features of the electron transfer through these molecular wires become much more clearly visible from the study of our current-voltage (II-VV) characteristics, and they provide several key informations in the study of molecular transport.Comment: 8 pages, 4 figure

    Selective spin transport through a quantum heterostructure: Transfer matrix method

    Full text link
    In the present work we propose that a one-dimensional quantum heterostructure composed of magnetic and non-magnetic atomic sites can be utilized as a spin filter for a wide range of applied bias voltage. A simple tight-binding framework is given to describe the conducting junction where the heterostructure is coupled to two semi-infinite one-dimensional non-magnetic electrodes. Based on transfer matrix method all the calculations are performed numerically which describe two-terminal spin dependent transmission probability along with junction current through the wire. Our detailed analysis may provide fundamental aspects of selective spin transport phenomena in one-dimensional heterostructures at nano-scale level.Comment: 12 pages, 15 figures (Accepted for Publication in: International Journal of Modern Physics B
    • …
    corecore