16,810 research outputs found

    Small Area Shrinkage Estimation

    Full text link
    The need for small area estimates is increasingly felt in both the public and private sectors in order to formulate their strategic plans. It is now widely recognized that direct small area survey estimates are highly unreliable owing to large standard errors and coefficients of variation. The reason behind this is that a survey is usually designed to achieve a specified level of accuracy at a higher level of geography than that of small areas. Lack of additional resources makes it almost imperative to use the same data to produce small area estimates. For example, if a survey is designed to estimate per capita income for a state, the same survey data need to be used to produce similar estimates for counties, subcounties and census divisions within that state. Thus, by necessity, small area estimation needs explicit, or at least implicit, use of models to link these areas. Improved small area estimates are found by "borrowing strength" from similar neighboring areas.Comment: Published in at http://dx.doi.org/10.1214/11-STS374 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quasi-Inclusive and Exclusive decays of BB to η′\eta'

    Full text link
    We consider the effective Hamiltonian of four quark operators in the Standard Model in the exclusive and quasi-inclusive decays of the type B→K(∗)η′B\to K^{(*)} \eta^{\prime}, B→η′XsB\to \eta' X_s, where XsX_s contains a single Kaon. Working in the factorization assumption we find that the four quark operators can account for the recently measured exclusive decays B→η′(η)KB\to \eta^{\prime}(\eta) K and B→KπB\to K \pi for appropriate choice of form factors but cannot explain the large quasi-inclusive rate.Comment: Calculation of B→KπB \to K \pi added and the correct BSW form factors have been used. Latex 13 papges, 1 figur

    One-shot rates for entanglement manipulation under non-entangling maps

    Get PDF
    We obtain expressions for the optimal rates of one- shot entanglement manipulation under operations which generate a negligible amount of entanglement. As the optimal rates for entanglement distillation and dilution in this paradigm, we obtain the max- and min-relative entropies of entanglement, the two logarithmic robustnesses of entanglement, and smoothed versions thereof. This gives a new operational meaning to these entanglement measures. Moreover, by considering the limit of many identical copies of the shared entangled state, we partially recover the recently found reversibility of entanglement manipu- lation under the class of operations which asymptotically do not generate entanglement.Comment: 7 pages; no figure

    Nonlinear conductance quantization in graphene ribbons

    Full text link
    We present numerical studies of non-linear conduction in graphene nanoribbons when a bias potential is applied between the source and drain electrodes. We find that the conductance quantization plateaus show asymmetry between the electron and hole branches if the potential in the ribbon equals the source or drain electrode potential and strong electron (hole) scattering occurs. The scattering may be at the ends of a uniform ballistic ribbon connecting wider regions of graphene or may be due to defects in the ribbon. We argue that, in ribbons with strong defect scattering, the ribbon potential is pinned to that of the drain (source) for electron (hole) transport. In this case symmetry between electron and hole transport is restored and our calculations explain the upward shift of the conductance plateaus with increasing bias that was observed experimentally by Lin et al. [Phys. Rev. B 78, 161409 (2008)].Comment: 6 pages, 3 figure
    • …
    corecore