10,514 research outputs found

    Microwave stabilization of edge transport and zero-resistance states

    Full text link
    Edge channels play a crucial role for electron transport in two dimensional electron gas under magnetic field. It is usually thought that ballistic transport along edges occurs only in the quantum regime with low filling factors. We show that a microwave field can stabilize edge trajectories even in the semiclassical regime leading to a vanishing longitudinal resistance. This mechanism gives a clear physical interpretation for observed zero-resistance states

    Quantum discord and the power of one qubit

    Full text link
    We use quantum discord to characterize the correlations present in the quantum computational model DQC1, introduced by Knill and Laflamme [Phys. Rev. Lett. 81, 5672 (1998)]. The model involves a collection of qubits in the completely mixed state coupled to a single control qubit that has nonzero purity. The initial state, operations, and measurements in the model all point to a natural bipartite split between the control qubit and the mixed ones. Although there is no entanglement between these two parts, we show that the quantum discord across this split is nonzero for typical instances of the DQC1 ciruit. Nonzero values of discord indicate the presence of nonclassical correlations. We propose quantum discord as figure of merit for characterizing the resources present in this computational model.Comment: 4 Pages, 1 Figur

    Quasi-equilibrium optical nonlinearities in spin-polarized GaAs

    Full text link
    Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasi-equilibrium regime. These equations have been recently extended to include the spin degree of freedom, and used to explain spin dynamics in the coherent regime. In the quasi-equilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin-unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin-polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence our results may be useful in the microscopic modelling of density-dependent optical nonlinearities in spin-polarized semiconductors.Comment: 7 pages, 6 figure

    Temperature Profiles of Accretion Disks around Rapidly Rotating Neutron Stars in General Relativity and Implications for Cygnus X-2

    Full text link
    We calculate the temperature profiles of (thin) accretion disks around rapidly rotating neutron stars (with low surface magnetic fields), taking into account the full effects of general relativity. We then consider a model for the spectrum of the X-ray emission from the disk, parameterized by the mass accretion rate, the color temperature and the rotation rate of the neutron star. We derive constraints on these parameters for the X-ray source Cygnus X-2 using the estimates of the maximum temperature in the disk along with the disk and boundary layer luminosities, using the spectrum inferred from the EXOSAT data. Our calculations suggest that the neutron star in Cygnus X-2 rotates close to the centrifugal mass-shed limit. Possible constraints on the neutron star equation of state are also discussed.Comment: 18 pages, 9 figs., 2 tables, uses psbox.tex and emulateapj5.sty. Submitted to Ap

    Dynamical mean field theory for strongly correlated inhomogeneous multilayered nanostructures

    Full text link
    Dynamical mean field theory is employed to calculate the properties of multilayered inhomogeneous devices composed of semi-infinite metallic lead layers coupled via barrier planes that are made from a strongly correlated material (and can be tuned through the metal-insulator Mott transition). We find that the Friedel oscillations in the metallic leads are immediately frozen in and don't change as the thickness of the barrier increases from one to eighty planes. We also identify a generalization of the Thouless energy that describes the crossover from tunneling to incoherent Ohmic transport in the insulating barrier. We qualitatively compare the results of these self-consistent many-body calculations with the assumptions of non-self-consistent Landauer-based approaches to shed light on when such approaches are likely to yield good results for the transport.Comment: 15 pages, 12 figures, submitted to Phys. Rev.

    The spin-double refraction in two-dimensional electron gas

    Full text link
    We briefly review the phenomenon of the spin-double refraction that originates at an interface separating a two-dimensional electron gas with Rashba spin-orbit coupling from a one without. We demonstrate how this phenomenon in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads

    A pertubative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates

    Full text link
    Recent experimental advances in scanning tunneling microscopy make the measurement of the conductance spectra of isolated and magnetically coupled atoms on nonmagnetic substrates possible. Notably these spectra are characterized by a competition between the Kondo effect and spin-flip inelastic electron tunneling. In particular they include Kondo resonances and a logarithmic enhancement of the conductance at voltages corresponding to magnetic excitations, two features that cannot be captured by second order perturbation theory in the electron-spin coupling. We have now derived a third order analytic expression for the electron-spin self-energy, which can be readily used in combination with the non-equilibrium Green's function scheme for electron transport at finite bias. We demonstrate that our method is capable of quantitative description the competition between Kondo resonances and spin-flip inelastic electron tunneling at a computational cost significantly lower than that of other approaches. The examples of Co and Fe on CuN are discussed in detail

    Relevance of Induced Gauge Interactions in Decoherence

    Full text link
    Decoherence in quantum cosmology is shown to occur naturally in the presence of induced geometric gauge interactions associated with particle production.A new 'gauge '-variant form of the semiclassical Einstein equations is also presented which makes the non-gravitating character of the vacuum polarisation energy explicit.Comment: 10 pages, LATEX, IC/94/16

    Transport properties of a quantum wire: the role of extended time-dependent impurities

    Full text link
    We study the transport properties of a quantum wire, described by the Tomonaga-Luttinger model, in the presence of a backscattering potential provided by several extended time-dependent impurities (barriers). Employing the B\" uttiker-Landauer approach, we first consider the scattering of noninteracting electrons (g=1g=1) by a rectangular-like barrier and find an exact solution for the backscattering current, as well as a perturbative solution for a weak static potential with an arbitrary shape. We then include electron-electron interactions and use the Keldysh formalism combined with the bosonization technique to study oscillating extended barriers. We show that the backscattering current off time-dependent impurities can be expressed in terms of the current for the corresponding static barrier. Then we determine the backscattering current for a static extended potential, which, in the limit of noninteracting electrons (g=1g=1), coincides with the result obtained using the B\" uttiker-Landauer formalism. In particular, we find that the conductance can be increased beyond its quantized value in the whole range of repulsive interactions 0<g<10<g<1 already in the case of a single oscillating extended impurity, in contrast %contrary to the case of a point-like impurity, where this phenomenon occurs only for 0<g<1/20<g<1/2.Comment: 9 pages, 5 figure
    corecore