145 research outputs found

    N-Acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans

    Get PDF
    Candida albicans is able to grow in a variety of reversible morphological forms (yeast, pseudohyphal and hyphal) in response to various environmental signals, noteworthy among them being N-acetylglucosamine (GlcNAc). The gene CaGAP1, homologous to GAP1, which encodes the general amino acid permease from Saccharomyces cerevisiae, was isolated on the basis of its induction by GlcNAc through differential screening of a C. albicans genomic library. The gene could functionally complement an S. cerevisiae gap1 mutant by rendering it susceptible to the toxic amino acid analogue mimosine in minimal proline media. As in S. cerevisiae, mutation of the CaGAP1 gene had an effect on citrulline uptake in C. albicans. Northern analysis showed that GlcNAc-induced expression of CaGAP1 was further enhanced in synthetic minimal media supplemented with single amino acids (glutamate, proline and glutamine) or urea (without amino acids) but repressed in minimal ammonium media. Induction of CaGAP1 expression by GlcNAc was nullified in C. albicans deleted for the transcription factor CPH1 and the hyphal regulator RAS1, indicating the involvement of Cph1p-dependent Ras1p signalling in CaGAP1 expression. A homozygous mutant of this gene showed defective hyphal formation in solid hyphal-inducing media and exhibited less hyphal clumps when induced by GlcNAc. Alteration of morphology and short filamentation under nitrogen-starvation conditions in the heterozygous mutant suggested that CaGAP1 affects morphogenesis in a dose-dependent manner

    Induction of secretory acid proteinase in Candida albicans

    Get PDF
    Candida albicans and some other pathogenic Candida species, when grown in a medium containing a protein as a sole source of nitrogen, secrete an acid proteinase. Culture supernatants were assayed for proteinase activity, and were also analysed by Western blotting with antibodies raised and affinity-purified against proteinase of C. albicans. Proteinases secreted by C. tropicalis and C. parapsilosis were antigenically related to that of C. albicans, but had different molecular masses. The proteinases secreted by C. lipolytica, C. rugosa and C. lusitaniae were not antigenically related. The kinetics of proteinase secretion by C. albicans were monitored by activity and by Western blotting. With BSA as the nitrogen source, proteinase secretion increased exponentially until about 16 h. Culture supernatants of BSA-grown cultures accumulated proteinase to about a 1000-fold higher level than those of ammonium-sulphate-grown cultures. In vivo labelling experiments showed that proteinase was not detectably accumulated in the cells, but was secreted immediately after synthesis. Immunoprecipitation of in vitro translated poly(A)-containing RNA identified a putative pre-protein of about 54 kDa. As well as BSA, other proteins (haemoglobin, ovalbumin, histone), peptone and tryptone, when used as nitrogen sources, could induce proteinase, but to different levels. When Casamino acids or an amino acid mixture (equivalent to the composition of BSA) was used as nitrogen source, no induction was observed. Ammonium sulphate, or any other ammonium salt, repressed secretion of proteinase

    Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans

    Get PDF
    N-Acetyl-D-glucosamine-induced germ tube formation in Candida albicans at 37 °C was accompanied by an increase in the rate of protein phosphorylation. The calmodulin antagonist trifluoperazine and the Ca2+ ionophore A23187, which inhibited germ tube formation, also reduced the rate of phosphorylation. The rate of phosphorylation was also reduced when cells were incubated at 25 °C, which favoured yeast-phase growth. Two-dimensional SDS-PAGE analysis of phosphoproteins from germ-tube-forming and yeast cells revealed two germ-tube-specific and three yeast-specific phosphoproteins. Germ tubes and hyphae had more calmodulin activity than yeast cells, irrespective of the germ-tube-inducing condition used. As a first step towards understanding the inhibitory effect of trifluoperazine on germ tube formation, calmodulin from C. albicans was purified to homogeneity. It was heat stable, and displayed a pronounced Ca2+-induced shift in electrophoretic mobility

    Comparative analyses of nuclear proteome: extending its function

    Get PDF
    Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10–20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect

    Small RNAs in plants: recent development and application for crop improvement

    Get PDF
    The phenomenon of RNA interference (RNAi) which involves sequence specific gene regulation by small non-coding RNAs i.e small interfering RNA (siRNA) and micro RNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits & vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. Micro RNAs are key regulators of important plant processes like growth, development and response to various stresses. In spite of similarity in size (20-24nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. Micro RNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA based transgenics are much safer for consumption than those over expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of small RNAs and its application for crop improvement

    Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.)

    Get PDF
    Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuable information about the underlying pathways involved in environmental stress responses. The nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. To gain a better understanding of dehydration response in plants, we have developed a comparative nuclear proteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water and the changes in the nuclear proteome were examined using two-dimensional gel electrophoresis. Approximately 205 protein spots were found to be differentially regulated under dehydration. Mass spectrometry analysis allowed the identification of 147 differentially expressed proteins, presumably involved in a variety of functions including gene transcription and replication, molecular chaperones, cell signaling, and chromatin remodeling. The dehydration responsive nuclear proteome of chickpea revealed a coordinated response, which involves both the regulatory as well as the functional proteins. This study, for the first time, provides an insight into the complex metabolic network operating in the nucleus during dehydration

    Plant pre-mRNA splicing in fission yeast, Schizosaccharomyces pombe

    Get PDF
    Pre-mRNA splicing or the removal of introns from precursor messenger RNAs depends on the accurate recognition of intron sequences by the splicing machinery. We have analyzed various aspects of intron sequence and structure in relation to splice site selection and splicing efficiency of a plant gene AmA1 in Schizosaccharomyces pombe. Earlier, we reported the cloning of AmA1, a seed albumin gene from Amaranthus hypochondriacus [A. Raina, A. Datta, Proc. Natl. Acad. Sci. USA 89 (1992) 11774]. In the absence of an in vitro splicing system for plants, the expression of AmA1 genomic clone in S. pombe has been used to analyze splicing of intron constructs. We aim to focus on S. pombe as a possible alternative and examined its effectiveness as a host for plant gene splicing. The results show here that pre-mRNA transcripts of AmA1 gene underwent splicing in S. pombe

    Oxalate decarboxylase from Collybia velutipes: molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato

    Get PDF
    Oxalic acid is present as nutritional stress in many crop plants like Amaranth and Lathyrus. Oxalic acid has also been found to be involved in the attacking mechanism of several phytopathogenic fungi. A full-length cDNA for oxalate decarboxylase, an oxalate-catabolizing enzyme, was isolated by using 5'-rapid amplification of cDNA ends-polymerase chain reaction of a partial cDNA as cloned earlier from our laboratory (Mehta, A., and Datta, A. (1991) J. Biol. Chem. 266, 23548-23553). By screening a genomic library from Collybia velutipes with this cDNA as a probe, a genomic clone has been isolated. Sequence analyses and comparison of the genomic sequence with the cDNA sequence revealed that the cDNA is interrupted with 17 small introns. The cDNA has been successfully expressed in cytosol and vacuole of transgenic tobacco and tomato plants. The transgenic plants show normal phenotype, and the transferred trait is stably inherited to the next generation. The recombinant enzyme is partially glycosylated and shows oxalate decarboxylase activity in vitro as well as in vivo. Transgenic tobacco and tomato plants expressing oxalate decarboxylase show remarkable resistance to phytopathogenic fungus Sclerotinia sclerotiorum that utilizes oxalic acid during infestation. The result presented in the paper represents a novel approach to develop transgenic plants resistant to fungal infection

    Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality

    Get PDF
    Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato by expressing a single gene encoding C-5 sterol desaturase (FvC5SD) from an edible fungus Flammulina velutipes. FvC5SD is an iron binding protein involved in ergosterol biosynthesis. Morphological and biochemical analyses indicated ≈23% more epicuticular wax deposition in leaves of transgenic plants that provides an effective waterproof barrier resulting in improved protection from drought and infection by phytopathogenic fungus Sclerotinia sclerotiorum. Furthermore, the transgenic fruits have improved nutritional value attributed to enhanced level of beneficial PUFA and 2-3 fold increase in total iron content. This strategy can be extended to other economically important crops
    • …
    corecore