20 research outputs found

    Urine and plasma levels of uroguanylin and its molecular forms in renal diseases

    Get PDF
    Urine and plasma levels of uroguanylin and its molecular forms in renal diseases. Uroguanylin activates the intestinal and possibly the renal guanylate cyclase C receptor, and stimulates Cl− secretion. We developed a sensitive radioimmunoassay (RIA) for human uroguanylin and measured its concentration in the urine and plasma. Twenty-four-hour urinary excretion of immunoreactive (ir-) uroguanylin for persons with a high-salt diet (10 g/day) was 137.8 ± 14.4 pmol/day, significantly higher than that for persons with a low-salt diet (7 g/day, 95.1 ± 16.3 pmol/day, P < 0.05). There were significantly positive correlations between the urinary excretion of ir-uroguanylin and Na+, Cl−, K+ or cyclic GMP (cGMP). We demonstrated the presence of messenger RNA of guanylate cyclase C in the medulla of human kidney. The concentration of plasma ir-uroguanylin significantly correlated with that of serum creatinine (r = 0.71, P < 0.001). Biologically active uroguanylin-16 accounted for 99% of the endogenous uroguanylin molecules in normal urine and 60% in plasma, the remainder being the 10kDa precursor. The precursor content increased in the urine and plasma as the severity of renal impairment increased. These findings suggest that bioactive uroguanylin-16 is involved in the regulation of electrolyte homeostasis and that the kidney participates in the metabolism and excretion of uroguanylin

    Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In mammals, pheromones play an important role in social and innate reproductive behavior within species. In rodents, vomeronasal receptor type 1 (V1R), which is specifically expressed in the vomeronasal organ, is thought to detect pheromones. The V1R gene repertoire differs dramatically between mammalian species, and the presence of species-specific V1R subfamilies in mouse and rat suggests that V1R plays a profound role in species-specific recognition of pheromones. In ruminants, however, the molecular mechanism(s) for pheromone perception is not well understood. Interestingly, goat male pheromone, which can induce out-of-season ovulation in anestrous females, causes the same pheromone response in sheep, and vice versa, suggesting that there may be mechanisms for detecting "inter-species" pheromones among ruminant species.</p> <p>Results</p> <p>We isolated 23 goat and 21 sheep intact V1R genes based on sequence similarity with 32 cow V1R genes in the cow genome database. We found that all of the goat and sheep V1R genes have orthologs in their cross-species counterparts among these three ruminant species and that the sequence identity of V1R orthologous pairs among these ruminants is much higher than that of mouse-rat V1R orthologous pairs. Furthermore, all goat V1Rs examined thus far are expressed not only in the vomeronasal organ but also in the main olfactory epithelium.</p> <p>Conclusion</p> <p>Our results suggest that, compared with rodents, the repertoire of orthologous V1R genes is remarkably conserved among the ruminants cow, sheep and goat. We predict that these orthologous V1Rs can detect the same or closely related chemical compound(s) within each orthologous set/pair. Furthermore, all identified goat V1Rs are expressed in the vomeronasal organ and the main olfactory epithelium, suggesting that V1R-mediated ligand information can be detected and processed by both the main and accessory olfactory systems. The fact that ruminant and rodent V1Rs have distinct features suggests that ruminant and rodent V1Rs have evolved distinct functions.</p
    corecore