2,522 research outputs found

    Genericness of inflation in isotropic loop quantum cosmology

    Full text link
    Non-perturbative corrections from loop quantum cosmology (LQC) to the scalar matter sector is already known to imply inflation. We prove that the LQC modified scalar field generates exponential inflation in the small scale factor regime, for all positive definite potentials, independent of initial conditions and independent of ambiguity parameters. For positive semi-definite potentials it is always possible to choose, without fine tuning, a value of one of the ambiguity parameters such that exponential inflation results, provided zeros of the potential are approached at most as a power law in the scale factor. In conjunction with generic occurrence of bounce at small volumes, particle horizon is absent thus eliminating the horizon problem of the standard Big Bang model.Comment: 4 pages, revtex4, one figure. Only e-print archive numbers correctedi in the second version. Reference added in the 3rd version. Final version to appear in Phys. Rev. Lett. Explanations improve

    Reflectionless analytic difference operators I. algebraic framework

    Full text link
    We introduce and study a class of analytic difference operators admitting reflectionless eigenfunctions. Our construction of the class is patterned after the Inverse Scattering Transform for the reflectionless self-adjoint Schr\"odinger and Jacobi operators corresponding to KdV and Toda lattice solitons

    Basic Representations of A_{2l}^(2) and D_{l+1}^(2) and the Polynomial Solutions to the Reduced BKP Hierarchies

    Full text link
    Basic representations of A_{2l}^(2) and D_{l+1}^(2) are studied. The weight vectors are represented in terms of Schur's QQ-functions. The method to get the polynomial solutions to the reduced BKP hierarchies is shown to be equivalent to a certain rule in Maya game.Comment: January 1994, 11 page

    Quantum suppression of the generic chaotic behavior close to cosmological singularities

    Full text link
    In classical general relativity, the generic approach to the initial singularity is very complicated as exemplified by the chaos of the Bianchi IX model which displays the generic local evolution close to a singularity. Quantum gravity effects can potentially change the behavior and lead to a simpler initial state. This is verified here in the context of loop quantum gravity, using methods of loop quantum cosmology: the chaotic behavior stops once quantum effects become important. This is consistent with the discrete structure of space predicted by loop quantum gravity.Comment: revtex4, 4 pages, 5 figures. Published version. Title and abstract changed to match with the published version and Other minor changes. Conclusions unchange

    Lung and heart-lung transplantation

    Get PDF

    Absence of the Kasner singularity in the effective dynamics from loop quantum cosmology

    Full text link
    In classical general relativity, the generic approach to the initial singularity is usually understood in terms of the BKL scenario. In this scenario, along with the Bianchi IX model, the exact, singular, Kasner solution of vacuum Bianchi I model also plays a pivotal role. Using an effective classical Hamiltonian obtained from loop quantization of vacuum Bianchi I model, exact solution is obtained which is non-singular due to a discreteness parameter. The solution is parameterized in exactly the same manner as the usual Kasner solution and reduces to the Kasner solution as discreteness parameter is taken to zero. At the effective Hamiltonian level, the avoidance of Kasner singularity uses a mechanism distinct from the `inverse volume' modifications characteristic of loop quantum cosmology.Comment: 4 pages, revtex4, no figure

    Pre-classical solutions of the vacuum Bianchi I loop quantum cosmology

    Full text link
    Loop quantization of diagonalized Bianchi class A models, leads to a partial difference equation as the Hamiltonian constraint at the quantum level. A criterion for testing a viable semiclassical limit has been formulated in terms of existence of the so-called pre-classical solutions. We demonstrate the existence of pre-classical solutions of the quantum equation for the vacuum Bianchi I model. All these solutions avoid the classical singularity at vanishing volume.Comment: 4 pages, revtex4, no figures. In version 2, reference added and minor changes made. The final Version 3 includes additional explanation

    Discreteness Corrections to the Effective Hamiltonian of Isotropic Loop Quantum Cosmology

    Full text link
    One of the qualitatively distinct and robust implication of Loop Quantum Gravity (LQG) is the underlying discrete structure. In the cosmological context elucidated by Loop Quantum Cosmology (LQC), this is manifested by the Hamiltonian constraint equation being a (partial) difference equation. One obtains an effective Hamiltonian framework by making the continuum approximation followed by a WKB approximation. In the large volume regime, these lead to the usual classical Einstein equation which is independent of both the Barbero-Immirzi parameter γ\gamma as well as \hbar. In this work we present an alternative derivation of the effective Hamiltonian by-passing the continuum approximation step. As a result, the effective Hamiltonian is obtained as a close form expression in γ\gamma. These corrections to the Einstein equation can be thought of as corrections due to the underlying discrete (spatial) geometry with γ\gamma controlling the size of these corrections. These corrections imply a bound on the rate of change of the volume of the isotropic universe. In most cases these are perturbative in nature but for cosmological constant dominated isotropic universe, there are significant deviations.Comment: Revtex4, 24 pages, 3 figures. In version 2, one reference and a para pertaining to it are added. In the version 3, some typos are corrected and remark 4 in section III is revised. Final version to appear in Class. Quantum Gra
    corecore