167 research outputs found

    Tracing CP-violation in Lepton Flavor Violating Muon Decays

    Get PDF
    Although the Lepton Flavor Violating (LFV) decay μ+e+γ\mu^+\to e^+ \gamma is forbidden in the Standard Model (SM), it can take place within various theories beyond the SM. If the branching ratio of this decay saturates its present bound [{\it i.e.,} Br(μ+e+γ)1011(\mu^+ \to e^+\gamma)\sim 10^{-11}], the forthcoming experiments can measure the branching ratio with high precision and consequently yield information on the sources of LFV. In this letter, we show that for polarized μ+\mu^+, by studying the angular distribution of the transversely polarized positron and linearly polarized photon we can derive information on the CP-violating sources beyond those in the SM. We also study the angular distribution of the final particles in the decay μ+e1+ee2+\mu^+\to e^+_1 e^- e^+_2 where e1+e^+_1 is defined to be the more energetic positron. We show that transversely polarized e1+e_1^+ can provide information on a certain combination of the CP-violating phases of the underlying theory which would be lost by averaging over the spin of e1+e^+_1.Comment: 6 pages, 2 figure

    A Window on the CP-violating Phases of MSSM from Lepton Flavor Violating Processes

    Full text link
    It has recently been shown that by measuring the transverse polarization of the final particles in the LFV processes μeγ\mu \to e\gamma, μeee\mu \to eee and μNeN\mu N\to e N, one can derive information on the CP-violating phases of the underlying theory. We derive formulas for the transverse polarization of the final particles in terms of the couplings of the effective potential leading to these processes. We then study the dependence of the polarizations of ee and γ\gamma in the μeγ\mu \to e \gamma and μNeN\mu N \to e N on the parameters of the Minimal Supersymmetric Standard Model (MSSM). We show that combining the information on various observables in the μeγ\mu \to e\gamma and μNeN\mu N\to e N search experiments with the information on the electric dipole moment of the electron can help us to solve the degeneracies in parameter space and to determine the values of certain phases.Comment: 16 pages, 8 figure

    Electromagnetic corrections in the anomaly sector

    Full text link
    Chiral perturbation theory in the anomaly sector for Nf=2N_f=2 is extended to include dynamical photons, thereby allowing a complete treatment of isospin breaking. A minimal set of independent chiral lagrangian terms is determined and the divergence structure is worked out. There are contributions from irreducible and also from reducible one-loop graphs, a feature of ChPT at order larger than four. The generating functional is non-anomalous at order e2p4e^2p^4, but not necessarily at higher order in e2e^2. Practical applications to γπππ\gamma\pi\to\pi\pi and to the π02γ\pi^0\to2\gamma amplitudes are considered. In the latter case, a complete discussion of the corrections beyond current algebra is presented including quark mass as well as electromagnetic effects.Comment: 26 pages, 3 figure

    Leptoquark Single and Pair production at LHC with CalcHEP/CompHEP in the complete model

    Full text link
    We study combined leptoquark (LQ) single and pair production at LHC at the level of detector simulation. A set of kinematical cuts has been worked out to maximize significance for combined signal events. It was shown that combination of signatures from LQ single and pair production not only significantly increases the LHC reach, but also allows us to give the correct signal interpretation. In particular, it was found that the LHC has potential to discover LQ with a mass up to 1.2 TeV and 1.5 TeV for the case of scalar and vector LQ, respectively, and LQ single production contributes 30-50% to the total signal rate for LQ-l-q coupling, taken equal to the electromagnetic coupling. This work is based on implementation of the most general form of scalar and vector LQ interactions with quarks and gluons into CalcHEP/CompHEP packages. This implementation, which authors made publicly available, was one the most important aspects of the study.Comment: LaTeX, 27 pages, 15 figure

    Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale

    Get PDF
    The thermal relic abundance of Dark Matter motivates the existence of new electroweak scale particles, independent of naturalness considerations. However, most unnatural Dark Matter models do not ensure the presence of new particles charged under SU(3)_C, resulting in challenging LHC phenomenology. Here, we present a class of models with scalar electroweak doublet Dark Matter that require a host of colored particles at the TeV scale. In these models, the Higgs boson is apparently fine-tuned, but the Dark Matter doublet is kept light without any additional fine-tuning.Comment: 1+22 pages, 5 figures. Added references. Minor clarification

    Radiative Mechanism to Light Fermion Masses in the MSSM

    Full text link
    In a previous work we have showed that the Z2{\cal Z}_{2}^{\prime} Symmetry, imply that the light fermions, the electron and the quarks, u,du,d and ss, get their masses only at one loop level. Here, we considere the more general hypothesis for flavour mixing in the sfermion sector in the MSSM. Then, we present our results to the masses of these light fermions and as a final result we can explain why the ss quark is heavier than the u,du,d quarks. This mechanism is in agrement with the experimental constraint on the sfermion's masses values.Comment: 22 pages, 8 figures, TeX mistakes corrected, accepted for publication in JHE

    A "Littlest Higgs" Model with Custodial SU(2) Symmetry

    Full text link
    In this note, a ``littlest higgs'' model is presented which has an approximate custodial SU(2) symmetry. The model is based on the coset space SO(9)/(SO(5)×SO(4))SO(9)/(SO(5)\times SO(4)). The light pseudo-goldstone bosons of the theory include a {\it single} higgs doublet below a TeV and a set of three SU(2)WSU(2)_W triplets and an electroweak singlet in the TeV range. All of these scalars obtain approximately custodial SU(2) preserving vacuum expectation values. This model addresses a defect in the earlier SO(5)×SU(2)×U(1)SO(5)\times SU(2)\times U(1) moose model, with the only extra complication being an extended top sector. Some of the precision electroweak observables are computed and do not deviate appreciably from Standard Model predictions. In an S-T oblique analysis, the dominant non-Standard Model contributions are the extended top sector and higgs doublet contributions. In conclusion, a wide range of higgs masses is allowed in a large region of parameter space consistent with naturalness, where large higgs masses requires some mild custodial SU(2) violation from the extended top sector.Comment: 22 pages + 8 figures; JHEP style, added references and extra discussion on size of T contributions, as well as some other minor clarifications. Version to appear in JHE

    Non-universal gaugino masses: a signal-based analysis for the Large Hadron Collider

    Full text link
    We discuss the signals at the Large Hadron Collider (LHC) for scenarios with non-universal gaugino masses in supersymmetric (SUSY) theories. We perform a multichannel analysis, and consider the ratios of event rates in different channels such as jets+ET/jets + {E}_T/ , samesame - and oppositeopposite-signdileptonssign dileptons +jets+ET/+jets+ {E}_T/ , as well as singleleptonsingle-lepton and trileptontrilepton final states together with jets+ET/jets + {E}_T/ . Low-energy SUSY spectra corresponding to high-scale gaugino non-universality arising from different breaking schemes of SU(5) as well as SO(10) Grand Unified (GUT) SUSY models are considered, with both degenerate low-energy sfermion masses and those arising from a supergravity scenario. We present the numerical predictions over a wide range of the parameter space using the event generator {\tt Pythia}, specifying the event selection criteria and pointing out regions where signals are likely to be beset with backgrounds. Certain broad features emerge from the study, which may be useful in identifying the signatures of different GUT breaking schemes and distinguishing them from a situation with a universal gaugino mass at high scale. The absolute values of the predicted event rates for different scenarios are presented together with the various event ratios, so that these can also be used whenever necessary.Comment: 54 pages, 18 figure

    Warped Higgsless Models with IR--Brane Kinetic Terms

    Full text link
    We examine a warped Higgsless SU(2)L×SU(2)R×U(1)BLSU(2)_L\times SU(2)_R\times U(1)_{B-L} model in 5--dd with IR(TeV)--brane kinetic terms. It is shown that adding a brane term for the U(1)BLU(1)_{B-L} gauge field does not affect the scale (23\sim 2-3 TeV) where perturbative unitarity in WL+WLWL+WLW_L^+ W_L^- \to W_L^+ W_L^- is violated. This term could, however, enhance the agreement of the model with the precision electroweak data. In contrast, the inclusion of a kinetic term corresponding to the SU(2)DSU(2)_D custodial symmetry of the theory delays the unitarity violation in WL±W_L^\pm scattering to energy scales of 67\sim 6-7 TeV for a significant fraction of the parameter space. This is about a factor of 4 improvement compared to the corresponding scale of unitarity violation in the Standard Model without a Higgs. We also show that null searches for extra gauge bosons at the Tevatron and for contact interactions at LEP II place non-trivial bounds on the size of the IR-brane terms.Comment: 23 pages, 8 figure

    The Little Higgs from a Simple Group

    Get PDF
    We present a model of electroweak symmetry breaking in which the Higgs boson is a pseudo-Nambu-Goldstone boson. By embedding the standard model SU(2) x U(1) into an SU(4) x U(1) gauge group, one-loop quadratic divergences to the Higgs mass from gauge and top loops are canceled automatically with the minimal particle content. The potential contains a Higgs quartic coupling which does not introduce one-loop quadratic divergences. Our theory is weakly coupled at the electroweak scale, it has new weakly coupled particles at the TeV scale and a cutoff above 10 TeV, all without fine tuning. We discuss the spectrum of the model and estimate the constraints from electroweak precision measurements.Comment: 29 pages, referencing error corrected after death threats, dude remove
    corecore