137 research outputs found

    Genome-wide introgression among distantly related Heliconius butterfly species

    Get PDF
    Background: Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded 'postman' wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. Results: We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Conclusions: Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets

    Two closely related ureotelic fish species of the genus Alcolapia express different levels of ammonium transporters in gills

    Get PDF
    Most fish excrete their nitrogenous waste across the gills as ammonia through the activity of the Rhesus glycoprotein ammonium transporters. In contrast, fish of the subgenus Alcolapia (Oreochromis) are the only vertebrates that survive the extreme conditions of the soda lakes of Natron and Magadi in East Africa and have evolved adaptations to the highly alkaline waters including the ability to excrete their nitrogenous waste as urea. Nevertheless, Alcolapia retain the Rhesus glycoprotein genes in their genomes and using two heterologous expression systems, we demonstrate that Alcolapia Rhbg is capable of moving ammonia. Comparing ammonia and urea excretion from two closely related Alcolapia species from the same aquarium, we found that while Alcolapia grahami remains fully ureotelic after many generations in lab conditions, Alcolapia alcalica excretes some of its nitrogenous waste as ammonia. Using in situ hybridisation, we demonstrate robust, localised gene expression of Rhbg, rhcg1 and rhcg2 in the gill tissue in both A. alcalica embryos and adults, similar to that in other ammoniotelic fish. In contrast, the expression of these genes in A. grahami gills is much lower than in A. alcalica, suggesting the rapid evolution of a molecular mechanism underlying the complete ureotelism of A. grahami

    Runs of homozygosity reveal contrasting histories of inbreeding across global lineages of the edible porcini mushroom, Boletus edulis

    Get PDF
    Inbreeding, the mating of individuals that are related through common ancestry, is of central importance in evolutionary and conservation biology due to its impacts on individual fitness and population dynamics. However, while advanced genomic approaches have revolutionised the study of inbreeding in animals, genomic studies of inbreeding are rare in plants and lacking in fungi. We investigated global patterns of inbreeding in the prized edible porcini mushroom Boletus edulis using 225 whole genomes from seven lineages distributed across the northern hemisphere. Genomic inbreeding was quantified using runs of homozygosity (ROHs). We found appreciable variation both among and within lineages, with some individuals having over 20% of their genomes in ROHs. Much of this variation could be explained by a combination of elevation and latitude, and to a lesser extent by predicted habitat suitability during the last glacial maximum. In line with this, the majority of ROHs were short, reflecting ancient common ancestry dating back approximately 200–1700 generations ago, while longer ROHs indicative of recent common ancestry (less than approximately 50 generations ago) were infrequent. Our study reveals the inbreeding legacy of major climatic events in a widely distributed forest mutualist, aligning with prevailing theories and empirical studies of the impacts of historical glaciation events on the dominant forest tree species of the northern hemisphere

    Deep convergence, shared ancestry and evolutionary novelty in the genetic architecture of heliconius mimicry

    Get PDF
    Convergent evolution can occur through different genetic mechanisms in different species. It is now clear that convergence at the genetic level is also widespread, and can be caused by either (i) parallel genetic evolution, where independently evolved convergent mutations arise in different populations or species, or (ii) collateral evolution in which shared ancestry results from either ancestral polymorphism or introgression among taxa. The adaptive radiation of Heliconius butterflies shows color pattern variation within species, as well as mimetic convergence between species. Using comparisons from across multiple hybrid zones, we use signals of shared ancestry to identify and refine multiple putative regulatory elements in Heliconius melpomene and its comimics, Heliconius elevatus and Heliconius besckei, around three known major color patterning genes: optix, WntA, and cortex. While we find that convergence between H. melpomene and H. elevatus is caused by a complex history of collateral evolution via introgression in the Amazon, convergence between these species in the Guianas appears to have evolved independently. Thus, we find adaptive convergent genetic evolution to be a key driver of regulatory changes that lead to rapid phenotypic changes. Furthermore, we uncover evidence of parallel genetic evolution at some loci around optix and WntA in H. melpomene and its distant comimic Heliconius erato. Ultimately, we show that all three of convergence, conservation, and novelty underlie the modular architecture of Heliconius color pattern mimicry

    Integrating ecology into macroevolutionary research

    Get PDF
    On 9 March, over 150 biologists gathered in London for the Centre for Ecology and Evolution spring symposium, ‘Integrating Ecology into Macroevolutionary Research’. The event brought together researchers from London-based institutions alongside others from across the UK, Europe and North America for a day of talks. The meeting highlighted methodological advances and recent analyses of exemplar datasets focusing on the exploration of the role of ecological processes in shaping macroevolutionary patterns

    Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution

    Get PDF
    The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ~20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr

    Sympatric and allopatric Alcolapia soda lake cichlid species show similar levels of assortative mating

    Get PDF
    Characterising reproductive barriers such as mating preferences within rapid evolutionary radiations is crucial for understanding the early stages of speciation. Cichlid fishes are well-known for their adaptive radiations and capacity for rapid speciation and as such we investigate assortative mating among Alcolapia species; a recent (<10,000 years), small adaptive radiation, endemic to the extreme soda lakes, Magadi (one species) and Natron (three species), in East Africa. In seminatural aquarium conditions, we observed both courtship and mate choice (tested by microsatellite paternity analysis) to be significantly assortative among the three sympatric Natron species in a three-way choice experiment. This was also the case between allopatric species from Natron and Magadi, as found in a two-way choice experiment. However, the proportion of disassortative matings was substantial in both of these experiments, with hybrids comprising 29% of offspring in sympatric species and 11.4% in allopatric species comparisons. . Previous work suggests that the Natron/Magadi split might not be much older than the radiation within Natron, so the similar rate of hybridisation in the allopatric comparison is surprising and inconsistent with predictions of reinforcement theory, which predicts a faster rate of accumulation of premating isolation in sympatry. The relatively weak assortative mating in sympatry suggests that additional reproductive barriers, such as microhabitat preferences or spatial structuring may contribute to genetic isolation in nature

    Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.

    Get PDF
    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.This work was funded by BBSRC grant H01439X/1, ERC grant MimEvol and ANR grant HybEvol to MJ.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pbio.100235

    Sympatric and allopatric Alcolapia soda lake cichlid species show similar levels of assortative mating

    Get PDF
    Characterizing reproductive barriers such as mating preferences within rapid evolutionary radiations is crucial for understanding the early stages of speciation. Cichlid fishes are well-known for their adaptive radiations and capacity for rapid speciation and as such we investigate assortative mating among Alcolapia species; a recent (<10,000 years), small adaptive radiation, endemic to the extreme soda lakes, Magadi (one species) and Natron (three species), in East Africa. In seminatural aquarium conditions, we observed both courtship and mate choice (tested by microsatellite paternity analysis) to be significantly assortative among the three sympatric Natron species in a three-way choice experiment. This was also the case between allopatric species from Natron and Magadi, as found in a two-way choice experiment. However, the proportion of disassortative matings was substantial in both of these experiments, with hybrids comprising 29% of offspring in sympatric species and 11.4% in allopatric species comparisons. Previous work suggests that the Natron/Magadi split might not be much older than the radiation within Natron, so the similar rate of hybridization in the allopatric comparison is surprising and inconsistent with predictions of reinforcement theory, which predicts a faster rate of accumulation of premating isolation in sympatry. The relatively weak assortative mating in sympatry suggests that additional reproductive barriers, such as microhabitat preferences or spatial structuring may contribute to genetic isolation in nature
    • …
    corecore