102 research outputs found

    Traumatic brain injury stimulates hippocampal catechol-O-methyl transferase expression in microglia.

    Get PDF
    Outcome following traumatic brain injury (TBI) is in large part determined by the combined action of multiple processes. In order to better understand the response of the central nervous system to injury, we utilized an antibody array to simultaneously screen 507 proteins for altered expression in the injured hippocampus, a structure critical for memory formation. Array analysis indicated 41 candidate proteins have altered expression levels 24h after TBI. Of particular interest was catechol-O-methyl transferase (COMT), an enzyme involved in metabolizing catecholamines released following neuronal activity. Altered catecholamine signaling has been observed after brain injury, and may contribute to the cognitive dysfunctions and behavioral deficits often experienced after TBI. Our data shows that COMT expression in the injured ipsilateral hippocampus was elevated for at least 14 d after controlled cortical impact injury. We found strong co-localization of COMT immunoreactivity with the microglia marker Iba1 near the injury site. Since dopamine transporter expression has been reported to be down-regulated after brain injury, COMT-mediated catecholamine metabolism may play a more prominent role in terminating catecholamine signaling in injured areas

    Traumatic Brain Injury-Associated Epigenetic Changes and the Risk for Neurodegenerative Diseases

    Get PDF
    Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer\u27s or Parkinson\u27s are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer\u27s disease, Parkinson\u27s disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs

    Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning

    Get PDF
    BACKGROUND: The extent of similarity between consolidation and reconsolidation is not yet fully understood. One of the differences noted is that not every brain region involved in consolidation exhibits reconsolidation. In trace fear conditioning, the hippocampus and the medial prefrontal cortex (mPFC) are required for consolidation of long-term memory. We have previously demonstrated that trace fear memory is susceptible to infusion of the protein synthesis inhibitor anisomycin into the hippocampus following recall. In the present study, we examine whether protein synthesis inhibition in the mPFC following recall similarly results in the observation of reconsolidation of trace fear memory. RESULTS: Targeted intra-mPFC infusions of anisomycin or vehicle were performed immediately following recall of trace fear memory at 24 hours, or at 30 days, following training in a one-day or a two-day protocol. The present study demonstrates three key findings: 1) trace fear memory does not undergo protein synthesis dependent reconsolidation in the PFC, regardless of the intensity of the training, and 2) regardless of whether the memory is recent or remote, and 3) intra-mPFC inhibition of protein synthesis immediately following training impaired remote (30 days) memory. CONCLUSION: These results suggest that not all structures that participate in memory storage are involved in reconsolidation. Alternatively, certain types of memory-related information may reconsolidate, while other components of memory may not

    Intra-hippocampal administration of the VEGF receptor blocker PTK787/ZK222584 impairs long-term memory.

    Get PDF
    A number of studies have established a role for vascular endothelial growth factor (VEGF) in angiogenesis. Recent reports have shown that VEGF overexpression in the hippocampus improves learning and memory and is associated with enhanced neurogenesis. PTK787/ZK222584 (PTK/ZK) is a reported inhibitor of VEGFR signaling that is currently being tested for its effects on lung and colon cancer. However, the influence of this drug on cognition has not been examined. In the present study, we questioned if post-training administration of PTK/ZK influences hippocampus-dependent memory. When administered to rats immediately following massed training in the Morris water maze, PTK/ZK impaired spatial memory retention tested 48 h later. This impairment was evidenced by increased latency to the hidden platform and fewer platform crossings. However, this impairment was not associated with a change in neurogenesis during this time frame. PTK/ZK infusion did not reduce VEGFR or AKT phosphorylation, but increased the phosphorylation of ERK. These studies suggest that VEGFR inhibitors such as PTK/ZK may negatively influence cognition

    Caudal Dmn Neurons Innervate the Spleen and Release Cart Peptide to Regulate Neuroimmune Function

    Get PDF
    BACKGROUND: Inflammation is a fundamental biological response to injury and infection, which if unregulated can contribute to the pathophysiology of many diseases. The vagus nerve, which primarily originates from the dorsal motor nucleus (DMN), plays an important role in rapidly dampening inflammation by regulating splenic function. However, direct vagal innervation of the spleen, which houses the majority of immune and inflammatory cells, has not been established. As an alternative to direct innervation, an anti-inflammatory reflex pathway has been proposed which involves the vagus nerve, the sympathetic celiac ganglion, and the neurotransmitter norepinephrine. Although sympathetic regulation of inflammation has been shown, the interaction of the vagus nerve and the celiac ganglia requires a unique interaction of parasympathetic and sympathetic inputs, making this putative mechanism of brain-spleen interaction controversial. BODY: As neuropeptides can be expressed at relatively high levels in neurons, we reasoned that DMN neuropeptide immunoreactivity could be used to determine their target innervation. Employing immunohistochemistry, subdiaphragmatic vagotomy, viral tract tracing, CRISPR-mediated knock-down, and functional assays, we show that cocaine and amphetamine-regulated transcript (CART) peptide-expressing projection neurons in the caudal DMN directly innervate the spleen. In response to lipopolysaccharide (LPS) stimulation, CART acts to reduce inflammation, an effect that can be augmented by intrasplenic administration of a synthetic CART peptide. These in vivo effects could be recapitulated in cultured splenocytes, suggesting that these cells express the as yet unidentified CART receptor(s). CONCLUSION: Our results provide evidence for direct connections between the caudal DMN and spleen. In addition to acetylcholine, these neurons express the neuropeptide CART that, once released, acts to suppress inflammation by acting directly upon splenocytes

    Sulforaphane improves cognitive function administered following traumatic brain injury.

    Get PDF
    Recent studies have shown that sulforaphane, a naturally occurring compound that is found in cruciferous vegetables, offers cellular protection in several models of brain injury. When administered following traumatic brain injury (TBI), sulforaphane has been demonstrated to attenuate blood-brain barrier permeability and reduce cerebral edema. These beneficial effects of sulforaphane have been shown to involve induction of a group of cytoprotective, Nrf2-driven genes, whose protein products include free radical scavenging and detoxifying enzymes. However, the influence of sulforaphane on post-injury cognitive deficits has not been examined. In this study, we examined if sulforaphane, when administered following cortical impact injury, can improve the performance of rats tested in hippocampal- and prefrontal cortex-dependent tasks. Our results indicate that sulforaphane treatment improves performance in the Morris water maze task (as indicated by decreased latencies during learning and platform localization during a probe trial) and reduces working memory dysfunction (tested using the delayed match-to-place task). These behavioral improvements were only observed when the treatment was initiated 1h, but not 6h, post-injury. These studies support the use of sulforaphane in the treatment of TBI, and extend the previously observed protective effects to include enhanced cognition

    Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases

    Get PDF
    Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer’s or Parkinson’s are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs – Alzheimer’s disease, Parkinson’s disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs

    Intravenous mesenchymal stem cell therapy for traumatic brain injury.

    Get PDF
    OBJECT: Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS: Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS: At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS: The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the pulmonary first-pass effect, which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI

    Epigenetic Modifications and Their Potential Contribution to Traumatic Brain Injury Pathobiology and Outcome

    Get PDF
    Epigenetic information is not permanently encoded in the DNA sequence, but rather consists of reversible, heritable modifications that regulate the gene expression profile of a cell. Epigenetic modifications can result in cellular changes that can be long lasting and include DNA methylation, histone methylation, histone acetylation, and RNA methylation. As epigenetic modifications are reversible, the enzymes that add (epigenetic writers), the proteins that decode (epigenetic readers), and the enzymes that remove (epigenetic erasers) these modifications can be targeted to alter cellular function and disease biology. While epigenetic modifications and their contributions are intense topics of current research in the context of a number of diseases, including cancer, inflammatory diseases, and Alzheimer disease, the study of epigenetics in the context of traumatic brain injury (TBI) is in its infancy. In this review, we will summarize the experimental and clinical findings demonstrating that TBI triggers epigenetic modifications, with a focus on changes in DNA methylation, histone methylation, and the translational utility of the universal methyl donor S-adenosylmethionine (SAM). Finally, we will review the evidence for using methyl donors as possible treatments for TBI-associated pathology and outcome

    Enhanced Presynaptic Mitochondrial Energy Production Is Required for Memory Formation

    Get PDF
    Some of the prominent features of long-term memory formation include protein synthesis, gene expression, enhanced neurotransmitter release, increased excitability, and formation of new synapses. As these processes are critically dependent on mitochondrial function, we hypothesized that increased mitochondrial respiration and dynamics would play a prominent role in memory formation. To address this possibility, we measured mitochondrial oxygen consumption (OCR) in hippocampal tissue punches from trained and untrained animals. Our results show that context fear training significantly increased basal, ATP synthesis-linked, and maximal OCR in the Shaffer collateral-CA1 synaptic region, but not in the CA1 cell body layer. These changes were recapitulated in synaptosomes isolated from the hippocampi of fear-trained animals. As dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, we examined its role in the increased mitochondrial respiration observed after fear training. Drp1 inhibitors decreased the training-associated enhancement of OCR and impaired contextual fear memory, but did not alter the number of synaptosomes containing mitochondria. Taken together, our results show context fear training increases presynaptic mitochondria respiration, and that Drp-1 mediated enhanced energy production in CA1 pre-synaptic terminals is necessary for context fear memory that does not result from an increase in the number of synaptosomes containing mitochondria or an increase in mitochondrial mass within the synaptic layer
    • …
    corecore