10,226 research outputs found

    NiS - An unusual self-doped, nearly compensated antiferromagnetic metal

    Get PDF
    NiS, exhibiting a text-book example of a first-order transition with many unusual properties at low temperatures, has been variously described in terms of conflicting descriptions of its ground state during the past several decades. We calculate these physical properties within first-principle approaches based on the density functional theory and conclusively establish that all experimental data can be understood in terms of a rather unusual ground state of NiS that is best described as a self-doped, nearly compensated, antiferromagnetic metal, resolving the age-old controversy. We trace the origin of this novel ground state to the specific details of the crystal structure, band dispersions and a sizable Coulomb interaction strength that is still sub-critical to drive the system in to an insulating state. We also show how the specific antiferromagnetic structure is a consequence of the less-discussed 90 degree and less than 90 degree superexchange interactions built in to such crystal structures

    Amorphization of Vortex Matter and Reentrant Peak Effect in YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    The peak effect (PE) has been observed in a twinned crystal of YBa2_2Cu3_3O7δ_{7-\delta} for H\parallelc in the low field range, close to the zero field superconducting transition temperature (Tc_c(0)) . A sharp depinning transition succeeds the peak temperature Tp_p of the PE. The PE phenomenon broadens and its internal structure smoothens out as the field is increased or decreased beyond the interval between 250 Oe and 1000 Oe. Moreover, the PE could not be observed above 10 kOe and below 20 Oe. The locus of the Tp_p(H) values shows a reentrant characteristic with a nose like feature located at Tp_p(H)/Tc_c(0)\approx0.99 and H\approx100 Oe (where the FLL constant a0_0\approxpenetration depth λ\lambda). The upper part of the PE curve (0.5 kOe<<H<<10 kOe) can be fitted to a melting scenario with the Lindemann number cL_L\approx0.25. The vortex phase diagram near Tc_c(0) determined from the characteristic features of the PE in YBa2_2Cu3_3O7δ_{7-\delta}(H\parallelc) bears close resemblance to that in the 2H-NbSe2_2 system, in which a reentrant PE had been observed earlier.Comment: 15 pages and 7 figure

    Phase diagram of vortex matter in layered superconductors with random point pinning

    Full text link
    We study the phase diagram of the superconducting vortex system in layered high-temperature superconductors in the presence of a magnetic field perpendicular to the layers and of random atomic scale point pinning centers. We consider the highly anisotropic limit where the pancake vortices on different layer are coupled only by their electromagnetic interaction. The free energy of the vortex system is then represented as a Ramakrishnan-Yussouff free energy functional of the time averaged vortex density. We numerically minimize this functional and examine the properties of the resulting phases. We find that, in the temperature (TT) -- pinning strength (ss) plane at constant magnetic induction, the equilibrium phase at low TT and ss is a Bragg glass. As one increases ss or TT a first order phase transition occurs to another phase that we characterize as a pinned vortex liquid. The weakly pinned vortex liquid obtained for high TT and small ss smoothly crosses over to the strongly pinned vortex liquid as TT is decreased or ss increased -- we do not find evidence for the existence, in thermodynamic equilibrium, of a distinct vortex glass phase in the range of pinning parameters considered here. %cdr We present results for the density correlation functions, the density and defect distributions, and the local field distribution accessible via μ\muSR experiments. These results are compared with those of existing theoretical, numerical and experimental studies.Comment: 15 pages, including figures. Higher resolution files for Figs 3a and 11 available from author

    Vortex Phase Diagram of weakly pinned YBa2_2Cu3_3O7δ_{7-\delta} for H \parallel c

    Full text link
    Vortex phase diagram in a weakly pinned crystal of YBCO for H \parallel c is reviewed in the light of a recent elucidation of the process of `inverse melting' in a Bismuth cuprate system and the imaging of an interface between the ordered and the disordered regions across the peak effect in 2H-NbSe2_2. In the given YBCO crystal, a clear distinction can be made between the second magnetization peak (SMP) and the peak effect (PE) between 65 K and 75 K. The field region between the peak fields of the SMP (Hsmpm^m_{smp}) and the onset fields of the PE (Hpeon^{on}_{pe})is not only continuously connected to the Bragg glass phase at lower fields but it is also sandwiched between the higher temperature vortex liquid phase and the lower temperature vortex glass phase. Thus, an ordered vortex state between Hsmpm^m_{smp} and Hpeon^{on}_{pe} can get transformed to the (disordered) vortex liquid state on heating as well as to the (disordered) vortex glass state on cooling, a situation analogous to the thermal melting and the inverse melting phenomenon seen in a Bismuth cuprate.Comment: Presented in IWCC-200

    Experimental Persistence Probability for Fluctuating Steps

    Full text link
    The persistence behavior for fluctuating steps on the Si(111)Si(111) (3×3)R300Al(\sqrt3 \times \sqrt3)R30^{0} - Al surface was determined by analyzing time-dependent STM images for temperatures between 770 and 970K. The measured persistence probability follows a power law decay with an exponent of θ=0.77±0.03\theta=0.77 \pm 0.03. This is consistent with the value of θ=3/4\theta= 3/4 predicted for attachment/detachment limited step kinetics. If the persistence analysis is carried out in terms of return to a fixed reference position, the measured persistence probability decays exponentially. Numerical studies of the Langevin equation used to model step motion corroborate the experimental observations.Comment: LaTeX, 11 pages, 4 figures, minor changes in References sectio

    Magneto-optical rotation of spectrally impure fields and its nonlinear dependence on optical density

    Get PDF
    We calculate magneto-optical rptation of spectrally impure fileds in an optically thick cold atmic medium. We show that the spectral impurity leads to non-linear dependence of the rotation angle on optical density. Using our calculations, we provide a quanttative analysis of the recent experimental results of G. Labeyrie et al. [Phys. Rev. A 64, 033402 (2001)] using cold Rb85^{85} atoms.Comment: 6 pages, 5 Figures, ReVTeX4, Submitted to PR

    Where are the black hole entropy degrees of freedom ?

    Get PDF
    Understanding the area-proportionality of black hole entropy (the `Area Law') from an underlying fundamental theory has been one of the goals of all models of quantum gravity. A key question that one asks is: where are the degrees of freedom giving rise to black hole entropy located? Taking the point of view that entanglement between field degrees of freedom inside and outside the horizon can be a source of this entropy, we show that when the field is in its ground state, the degrees of freedom near the horizon contribute most to the entropy, and the area law is obeyed. However, when it is in an excited state, degrees of freedom far from the horizon contribute more significantly, and deviations from the area law are observed. In other words, we demonstrate that horizon degrees of freedom are responsible for the area law.Comment: 5 pages, 3 eps figures, uses Revtex4, References added, Minor changes to match published versio

    Entanglement as a source of black hole entropy

    Get PDF
    We review aspects of black hole thermodynamics, and show how entanglement of a quantum field between the inside and outside of a horizon can account for the area-proportionality of black hole entropy, provided the field is in its ground state. We show that the result continues to hold for Coherent States and Squeezed States, while for Excited States, the entropy scales as a power of area less than unity. We also identify location of the degrees of freedom which give rise to the above entropy.Comment: 12 pages, latex, 5 figures. Invited talk by SD at `Recent Developments in Gravity' (NEB XII), Nafplion, Greece, 30 June 2006. To appear in Journal of Physics: Conference Series; V2: References added, Minor changes to match published versio

    Cooperative orbital ordering and Peierls instability in the checkerboard lattice with doubly degenerate orbitals

    Full text link
    It has been suggested that the metal-insulator transitions in a number of spinel materials with partially-filled t_2g d-orbitals can be explained as orbitally-driven Peierls instabilities. Motivated by these suggestions, we examine theoretically the possibility of formation of such orbitally-driven states within a simplified theoretical model, a two-dimensional checkerboard lattice with two directional metal orbitals per atomic site. We include orbital ordering and inter-atom electron-phonon interactions self-consistently within a semi-classical approximation, and onsite intra- and inter-orbital electron-electron interactions at the Hartree-Fock level. We find a stable, orbitally-induced Peierls bond-dimerized state for carrier concentration of one electron per atom. The Peierls bond distortion pattern continues to be period 2 bond-dimerization even when the charge density in the orbitals forming the one-dimensional band is significantly smaller than 1. In contrast, for carrier density of half an electron per atom the Peierls instability is absent within one-electron theory as well as mean-field theory of electron-electron interactions, even for nearly complete orbital ordering. We discuss the implications of our results in relation to complex charge, bond, and orbital-ordering found in spinels.Comment: 8 pages, 5 figures; revised versio
    corecore