8,872 research outputs found

    Electronic structure and magnetism in doped semiconducting half-Heusler compounds

    Full text link
    We have studied in details the electronic structure and magnetism in M (Mn and Cr) doped semiconducting half-Heusler compounds FeVSb, CoTiSb and NiTiSn (XMx_{x}Y1x_{1-x}Z) in a wide concentration range using local-spin density functional method in the framework of tight-binding linearized muffin tin orbital method(TB-LMTO) and supercell approach. Our calculations indicate that some of these compounds are not only ferromagnetic but also half-metallic and may be useful for spintronics applications. The electronic structure of the doped systems is analyzed with the aid of a simple model where we have considered the interaction between the dopant transition metal (M) and the valence band X-Z hybrid. We have shown that the strong X-d - M-d interaction places the M-d states close to the Fermi level with the M-t2g_{2g} states lying higher in energy in comparison to the M-eg_{g} states. Depending on the number of available d-electrons, ferromagnetism is realized provided the d-manifold is partially occupied. The tendencies toward ferromagnetic(FM) or antiferromagnetic(AFM) behavior are discussed within Anderson-Hasegawa models of super-exchange and double-exchange. In our calculations for Mn doped NiTiSn, the strong preference for FM over AFM ordering suggests a possible high Curie temperature for these systems.Comment: 14 pages, 6 figure

    Potential inversion with subbarrier fusion data revisited

    Get PDF
    We invert experimental data for heavy-ion fusion reactions at energies well below the Coulomb barrier in order to directly determine the internucleus potential between the colliding nuclei. In contrast to the previous applications of the inversion formula, we explicitly take into account the effect of channel couplings on fusion reactions, by assuming that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. We apply this procedure to the 16^{16}O +144^{144}Sm and 16^{16}O +208^{208}Pb reactions, and find that the inverted internucleus potential are much thicker than phenomenological potentials. A relation to the steep fall-off phenomenon of fusion cross sections recently found at deep subbarrier energies is also discussed.Comment: 5 pages, 3 eps figure

    Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies

    Get PDF
    We perform a systematic study on the surface property of nucleus-nucleus potential in heavy-ion reactions using large-angle quasielastic scattering at energies well below the Coulomb barrier. At these energies, the quasielastic scattering can be well described by a single-channel potential model. Exploiting this fact, we point out that systems which involve spherical nuclei require the diffuseness parameter of around 0.60 fm in order to fit the experimental data, while systems with a deformed target between 0.8 fm and 1.1 fm.Comment: 6 pages, 6 figure

    Correlation effects on the electronic structure of TiOCl: a NMTO+DMFT study

    Full text link
    Using the recently developed N-th order muffin-tin orbital-based downfolding technique in combination with the Dynamical Mean Field theory, we investigate the electronic properties of the much discussed Mott insulator TiOCl in the undimerized phase. Inclusion of correlation effects through this approach provides a description of the spectral function into an upper and a lower Hubbard band with broad valence states formed out of the orbitally polarized, lower Hubbard band. We find that these results are in good agreement with recent photo-emission spectra.Comment: 4 pages, 3 figure

    Third-Generation TB-LMTO

    Full text link
    We describe the screened Korringa-Kohn-Rostoker (KKR) method and the third-generation linear muffin-tin orbital (LMTO) method for solving the single-particle Schroedinger equation for a MT potential. The simple and popular formalism which previously resulted from the atomic-spheres approximation (ASA) now holds in general, that is, it includes downfolding and the combined correction. Downfolding to few-orbital, possibly short-ranged, low-energy, and possibly orthonormal Hamiltonians now works exceedingly well, as is demonstrated for a high-temperature superconductor. First-principles sp3 and sp3d5 TB Hamiltonians for the valence and lowest conduction bands of silicon are derived. Finally, we prove that the new method treats overlap of the potential wells correctly to leading order and we demonstrate how this can be exploited to get rid of the empty spheres in the diamond structure.Comment: latex2e, 32 printed pages, Postscript figs, to be published in: Tight-Binding Approach to Computational Materials Science, MRS Symposia Proceedings No. 491 (MRS, Pittsburgh, 1998

    Geometric Transition versus Cascading Solution

    Get PDF
    We study Vafa's geometric transition and Klebanov - Strassler solution from various points of view in M-theory. In terms of brane configurations, we show the detailed equivalences between the two models. In some limits, both models have an alternative realization as fourfolds in M-theory with appropriate G-fluxes turned on. We discuss some aspects of the fourfolds including how to see the transition and a possible extension to the non-supersymmetric case.Comment: 34 pages, LaTex, 2 figures; v2: Some comments added and references updated. Final version to appear in JHE

    Equilibrium glassy phase in a polydisperse hard sphere system

    Full text link
    The phase diagram of a polydisperse hard sphere system is examined by numerical minimization of a discretized form of the Ramakrishnan-Yussouff free energy functional. Crystalline and glassy local minima of the free energy are located and the phase diagram in the density-polydispersity plane is mapped out by comparing the free energies of different local minima. The crystalline phase disappears and the glass becomes the equilibrium phase beyond a "terminal" value of the polydispersity. A crystal to glass transition is also observed as the density is increased at high polydispersity. The phase diagram obtained in our study is qualitatively similar to that of hard spheres in a quenched random potential.Comment: 4 pages, 4 figure

    Validity of the linear coupling approximation in heavy-ion fusion reactions at sub barrier energies

    Get PDF
    The role of higher order coupling of surface vibrations to the relative motion in heavy-ion fusion reactions at near-barrier energies is investigated. The coupled channels equations are solved to all orders, and also in the linear and the quadratic coupling approximations. Taking 64^{64}Ni + 92,96^{92,96}Zr reactions as examples, it is shown that all order couplings lead to considerably improved agreement with the experimentally measured fusion cross sections and average angular momenta of the compound nucleus for such heavy nearly symmetric systems. The importance of higher order coupling is also examined for asymmetric systems like 16^{16}O + 112^{112}Cd, 144^{144}Sm, for which previous calculations of the fusion cross section seemed to indicate that the linear coupling approximation was adequate. It is shown that the shape of the barrier distributions and the energy dependence of the average angular momentum can change significantly when the higher order couplings are included, even for systems where measured fusion cross sections may seem to be well reproduced by the linear coupling approximation.Comment: Latex file, 15 pages, 6 figure

    Laser induced reentrant freezing in two-dimensional attractive colloidal systems

    Get PDF
    The effects of an externally applied one-dimensional periodic potential on the freezing/melting behaviour of two-dimensional systems of colloidal particles with a short-range attractive interaction are studied using Monte Carlo simulations. In such systems, incommensuration results when the periodicity of the external potential does not match the length-scale at which the minimum of the attractive potential occurs. To study the effects of this incommensuration, we consider two different models for the system. Our simulations for both these models show the phenomenon of reentrant freezing as the strength of the periodic potential is varied. Our simulations also show that different exotic phases can form when the strength of the periodic potential is high, depending on the length-scale at which the minimum of the attractive pair-potential occurs.Comment: 24 pages (including figures) in preprint forma
    corecore