19 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Influence of the microstructural and mechanical properties of reinforced graphene in magnesium matrix fabricated by friction stir processing

    No full text
    The aim of the present researchwork is to find out the influence of uniform dispersion of different volume percentages of graphene nanoparticles into magnesium matrix, fabricated by friction stir processing (FSP). These composites can be used in various applications, particularly in electrical, automobile and aerospace industries due to its lightweight and good electrical and mechanical properties. The friction processed surface of pure magnesium and composites were characterized through X-ray diffraction (XRD). Mechanical properties such as tensile test of the friction stir processed (FSPed) composites were performed in universal testing machine and the specimen was prepared according to standard dimension by wire EDM. The initial properties of the material were compared to the FSPed pure magnesium matrix composites. The role of various volume percentages of reinforcement by FSP resulted in grain refinements as well as improved the mechanical properties of the FSPed composite.Nazish Alam, Md. Manzar Iqbal, Chander Prakash, Subhash Singh, and Animesh Basa
    corecore