23 research outputs found

    ХЛОРОПРЕНОВЫЙ КАУЧУК: ПРИМЕНЕНИЕ И ПОЛУЧЕНИЕ

    Get PDF
    Polychloroprene is widely used as a special-purpose rubber in such industries as automotive, construction, textile industry. Chloroprene rubber takes a significant share in the market of elastomers due to its properties. In recent years, a gradual increase in demand for chloroprene rubbers is expected. This trend is most clearly seen in regions with a developed automotive industry. World leaders in the production of chloroprene rubbers and latex demonstrate their interest in increasing production capacity. In Russia, chloroprene rubber is not produced, the demand is completely met by import. In this paper, the main industrial methods for the production of chloroprene monomer, based on various feedstocks: acetylene and butadiene-1,3, exist in the world practice. Advantages and disadvantages of each of the above methods for producing chloroprene monomer are given. Technical solutions for the improvement of the chloroprene-monomer preparation technology for the steps of chlorination of butadiene-1,3 and dehydrochlorination of 3,4-dichlorobutene-1 in a column apparatus are proposed. An improved process for the preparation of chloroprene rubber from butadiene-1,3 is described. The development of a modern technology for the production of chloroprene rubber based on domestic raw materials will make it possible to obtain a high-quality target product, which will lead to the exclusion of its imports.Полихлоропрен имеет широкое применение в качестве каучука специального назначения в таких отраслях, как автомобилестроение, строительство, текстильная промышленность. Хлоропреновый каучук занимает значительную долю на рынке эластомеров благодаря своим свойствам. В последние годы ожидается постепенный рост спроса на хлоропреновые каучуки. Наиболее ярко эта тенденция просматривается в регионах с развитой автомобильной промышленностью. Мировые лидеры в производстве хлоропреновых каучуков и латексов демонстрируют свою заинтересованность в увеличении производственных мощностей. В России хлоропреновый каучук не производится, спрос полностью удовлетворяется за счет импорта. В данной работе рассмотрены и проанализированы существующие в мировой практике основные промышленные способы получения хлоропрена-мономера, базирующиеся на различном исходном сырье: ацетилене и бутадиене-1,3. Приведены достоинства и недостатки каждого из указанных способов получения хлоропрена-мономера. Предложены технические решения по усовершенствованию технологии получения хлоропрена-мономера для стадий хлорирования бутадиена-1,3 и дегидрохлорирования 3,4-дихлорбутена-1 в колонном аппарате. Описан усовершенствованный процесс получения хлоропренового каучука из бутадиена-1,3. Разработка современной технологии производства хлоропренового каучука на базе отечественного сырья позволит получать целевой продукт высокого качества, что приведет к исключению его импорта

    Пиролиз хлористого метила на катализаторе SAPO-34/Al2O3 в условиях стационарного слоя и в режиме псевдоожижения

    Get PDF
    The process of pyrolysis of methyl chloride with the use of a silicoaluminophosphate catalyst granulated with Al2O3, the content of which varied in a range of 40–60 weight %, is investigated. The synthesized catalyst SAPO-34/Al2O3 in a mass ratio 60:40 is performed in the form of tablets for work in a stationary bed, as well as in a microsphere for the fluidized bed. The basic physical and chemical properties of the tested catalysts are determined. Comparison of the behaviour of the synthesized catalysts in the process of methyl chloride pyrolysis in the stationary bed and the fluidized bed is carried out. The process of methyl chloride pyrolysis on the fluidized bed microsphere catalyst is investigated. Temperature was varied in a range of 425–450ºС, the feed rate (WHSV, equivalent to the mass of methyl chloride) was in the range of 0.8–4.8 h−1 , time on stream (TOS) was 2 h. The basic technological parameters of the process providing conversion of methyl chloride not below 70% and selectivity of ethylene formation not lower than 45% are determined.Исследован процесс пиролиза хлористого метила с использованием силикоалюмофосфатного катализатора, гранулированного с оксидом алюминия, содержание которого варьируется в диапазоне 40–60% мас. Синтезированный катализатор SAPO-34/Al2O3 в массовом соотношении 60:40 выполнен в виде таблеток для работы в стационарном слое, а также в микросферическом виде для режима псевдоожижения. Определены основные физико-химические свойства тестируемых катализаторов. Проведено сравнение поведения синтезированных катализаторов в процессе пиролиза хлористого метила в условиях стационарного слоя и псевдоожижения. Процесс ката- литического пиролиза хлористого метила исследован при Т=425–450ºС, скорости массовой нагрузки хлористого метила 0.8–4.8 ч-1 на микросферическом катализаторе в режиме псевдоожижения. Определены основные технологические параметры проведения процесса, обеспечивающие конверсию хлористого метила не ниже 70% и селективность образования этилена не ниже 45%

    Пиролиз хлористого метила на катализаторе sapo-34 в исходной и модифицированных металлами формах

    Get PDF
    The process of pyrolysis of methyl chloride is investigated over various silicoaluminophosphates: pure SAPO-34 phase; modified Fe2O3 (SAPO-34Fe); modified SiO2 (SAPO-34Si); modified by magnesium (SAPO-34Mg). Methyl chloride to ethylene reaction was carried out using a fixed bed reactor with the following conditions. The feed rate (WHSV, equivalent to the mass of methyl chloride) was in the range of 2.52–8.52 h−1, time on stream (TOS) = 2 h, and temperature 425 and 450º С . It is shown that in the presence of these catalysts the process of pyrolysis of methyl chloride is carried out with selective formation of ethylene. It was observed that the initial activity of the catalysts decreases with TOS. The same order of deactivation of catalysts is practically observed: SAPO-34Mg > SAPO-34Fe> SAPO-34Si> SAPO-34. The positive effect of coke buildup on the selectivity of ethylene formation was observed for all samples of the catalyst. The observation was made for an increase in selectivity to ethylene when the feed rate was increased. Catalyst SAPO-34 gives high initial activity (degree of methyl chloride conversion: 80%), it has longer lifetime as compared to the other samples of the tested catalysts. Selectivity of ethylene formation over this catalyst is up to 50–54% mol.Процесс каталитического пиролиза хлористого метила исследован при 425 и 450ºС, массовой подаче хлористого метила 3.6–4 ч–1 на различных силикоалюмофосфатах: SAPO -34 – чистая фаза; модифицированный Fe2 O3 ( SAPO -34Fe ); модифицированный SiO2 ( SAPO -34Si ); модифици-рованный магнием ( SAPO -34Mg). Пиролиз хлористого метила на этих катализаторах осуществляется с селективным получением этилена . Установлено , что первоначальная активность катализаторов снижается по мере увеличения продолжительности опыта. Степень дезактивации катализаторов уменьшается в следующем ряду: SAPO -34Mg > SAPO -34Fe > SAPO -34Si > SAPO -34. Результаты ис-следований показывают, что селективность образования этилена находится в зависимости от степени дезактивации катализатора. Определены закономерности влияния массовой скорости по-дачи исходного реагента (2.52–8.52 ч–1) на конверсию хлористого метила и селективность обра-зования этилена. Каталитическая система SAPO -34 обладает высокой первоначальной активностью (конверсия – 80%), она более стабильна во времени по сравнению с другими образцами испытанных катализаторов. Селективность образования этилена на этом катализаторе достигает 50–54% мол

    CHLOROPRENE RUBBER: APPLICATION AND PRODUCTION

    Get PDF
    Polychloroprene is widely used as a special-purpose rubber in such industries as automotive, construction, textile industry. Chloroprene rubber takes a significant share in the market of elastomers due to its properties. In recent years, a gradual increase in demand for chloroprene rubbers is expected. This trend is most clearly seen in regions with a developed automotive industry. World leaders in the production of chloroprene rubbers and latex demonstrate their interest in increasing production capacity. In Russia, chloroprene rubber is not produced, the demand is completely met by import. In this paper, the main industrial methods for the production of chloroprene monomer, based on various feedstocks: acetylene and butadiene-1,3, exist in the world practice. Advantages and disadvantages of each of the above methods for producing chloroprene monomer are given. Technical solutions for the improvement of the chloroprene-monomer preparation technology for the steps of chlorination of butadiene-1,3 and dehydrochlorination of 3,4-dichlorobutene-1 in a column apparatus are proposed. An improved process for the preparation of chloroprene rubber from butadiene-1,3 is described. The development of a modern technology for the production of chloroprene rubber based on domestic raw materials will make it possible to obtain a high-quality target product, which will lead to the exclusion of its imports

    PYROLYSIS OF METHYL CHLORIDE ON CATALYST SAPO-34/Al<sub>2</sub>O<sub>3</sub> IN THE STATIONARY BED AND THE FLUIDIZED BED REACTOR

    No full text
    The process of pyrolysis of methyl chloride with the use of a silicoaluminophosphate catalyst granulated with Al2O3, the content of which varied in a range of 40–60 weight %, is investigated. The synthesized catalyst SAPO-34/Al2O3 in a mass ratio 60:40 is performed in the form of tablets for work in a stationary bed, as well as in a microsphere for the fluidized bed. The basic physical and chemical properties of the tested catalysts are determined. Comparison of the behaviour of the synthesized catalysts in the process of methyl chloride pyrolysis in the stationary bed and the fluidized bed is carried out. The process of methyl chloride pyrolysis on the fluidized bed microsphere catalyst is investigated. Temperature was varied in a range of 425–450ºС, the feed rate (WHSV, equivalent to the mass of methyl chloride) was in the range of 0.8–4.8 h−1 , time on stream (TOS) was 2 h. The basic technological parameters of the process providing conversion of methyl chloride not below 70% and selectivity of ethylene formation not lower than 45% are determined

    Pyrolysis of methyl chloride into ethylene over catalyst SAPO-34 in the forms initial and modified by metals

    No full text
    The process of pyrolysis of methyl chloride is investigated over various silicoaluminophosphates: pure SAPO-34 phase; modified Fe2O3 (SAPO-34Fe); modified SiO2 (SAPO-34Si); modified by magnesium (SAPO-34Mg). Methyl chloride to ethylene reaction was carried out using a fixed bed reactor with the following conditions. The feed rate (WHSV, equivalent to the mass of methyl chloride) was in the range of 2.52–8.52 h−1, time on stream (TOS) = 2 h, and temperature 425 and 450º С . It is shown that in the presence of these catalysts the process of pyrolysis of methyl chloride is carried out with selective formation of ethylene. It was observed that the initial activity of the catalysts decreases with TOS. The same order of deactivation of catalysts is practically observed: SAPO-34Mg &gt; SAPO-34Fe&gt; SAPO-34Si&gt; SAPO-34. The positive effect of coke buildup on the selectivity of ethylene formation was observed for all samples of the catalyst. The observation was made for an increase in selectivity to ethylene when the feed rate was increased. Catalyst SAPO-34 gives high initial activity (degree of methyl chloride conversion: 80%), it has longer lifetime as compared to the other samples of the tested catalysts. Selectivity of ethylene formation over this catalyst is up to 50–54% mol
    corecore