44 research outputs found

    A developmental conundrum: a stabilized form of β-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells

    Get PDF
    Wnt signaling orchestrates morphogenetic processes in which changes in gene expression are associated with dramatic changes in cell organization within developing tissue/organss. Upon signaling, excess β-catenin not utilized at cell–cell junctions becomes stabilized, where it can provide the transcriptional activating domain for Lef/Tcf DNA binding proteins. In skin epithelium, forced stabilization of β-catenin in epidermis promotes hair follicle morphogenesis, whereas conditional removal of β-catenin in hair progenitor cells specifies an epidermal fate. We now report that a single protein, a stabilized version of β-catenin lacking the COOH-terminal transactivation domain, acts in epidermis to promote hair fates and in hair cells to promote epidermal fate. This reveals fundamental differences in ways that epidermal and hair cells naturally respond to β-catenin signaling. In exploring the phenotype, we uncovered mechanistic insights into the complexities of Lef1/Tcf/β-catenin signaling. Importantly, how a cell will respond to the transgene product, where it will be localized, and whether it can lead to activation of endogenous β-catenin/Tcf/Lef complexes is specifically tailored to skin stem cells, their particular lineage and their relative stage of differentiation. Finally, by varying the level of β-catenin signaling during a cell fate program, the skin cell appears to be pliable, switching fates multiple times

    A case study of the reproducibility of transcriptional reporter cell-based RNAi screens in Drosophila

    Get PDF
    A second generation dsRNA library was used to re-assess factors that influence the outcome of transcriptional reporter-based whole-genome RNAi screens for the Wnt/Wingless (wg) and Hedgehog (hh)-signaling pathways

    Bili Inhibits Wnt/β-Catenin Signaling by Regulating the Recruitment of Axin to LRP6

    Get PDF
    BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg), the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway

    A Systematic Screen for Micro-RNAs Regulating the Canonical Wnt Pathway

    Get PDF
    MicroRNAs (miRs) and the canonical Wnt pathway are known to be dysregulated in human cancers and play key roles during cancer initiation and progression. To identify miRs that can modulate the activity of the Wnt pathway we performed a cell-based overexpression screen of 470 miRs in human HEK293 cells. We identified 38 candidate miRs that either activate or repress the canonical Wnt pathway. A literature survey of all verified candidate miRs revealed that the Wnt-repressing miRs tend to be anti-oncomiRs and down-regulated in cancers while Wnt-activating miRs tend to be oncomiRs and upregulated during tumorigenesis. Epistasis-based functional validation of three candidate miRs, miR-1, miR-25 and miR-613, confirmed their inhibitory role in repressing the Wnt pathway and suggest that while miR-25 may function at the level of â-catenin (β-cat), miR-1 and miR-613 act upstream of β-cat. Both miR-25 and miR-1 inhibit cell proliferation and viability during selection of human colon cancer cell lines that exhibit dysregulated Wnt signaling. Finally, transduction of miR-1 expressing lentiviruses into primary mammary organoids derived from Conductin-lacZ mice significantly reduced the expression of the Wnt-sensitive β-gal reporter. In summary, these findings suggest the potential use of Wnt-modulating miRs as diagnostic and therapeutic tools in Wnt-dependent diseases, such as cancer

    Tracking tumor evolution one-cell-at-a-time

    No full text
    Accumulating evidence suggests that intra-tumor heterogeneity (ITH) within tumor sub-populations is a major contributor to therapy resistance, with genomically distinct clonal populations exhibiting different therapeutic vulnerabilities. Here we employed single-cell transcriptomics in patient-derived primary cells to understand the impact of phenotypic intra-tumor heterogeneity on drug-induced tumor evolution in oral squamous cell carcinoma

    Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin

    No full text
    In skin, multipotent stem cells generate the keratinocytes of the epidermis, sebaceous gland, and hair follicles. In this paper, we show that Tcf3 and Lef1 control these differentiation lineages. In contrast to Lef1, which requires Wnt signaling and stabilized β-catenin to express the hair-specific keratin genes and control hair differentiation, Tcf3 can act independently of its β-catenin interacting domain to suppress features of epidermal terminal differentiation, in which Tcf3 is normally shut off, and promote features of the follicle outer root sheath (ORS) and multipotent stem cells (bulge), the compartments which naturally express Tcf3. These aspects of Tcf3's action are dependent on its DNA binding and Groucho repressor-binding domains. In the absence of its β-catenin interacting domain, Lef1's behavior (ΔNLef1) seems to be markedly distinct from that of ΔNTcf3. ΔNLef1 does not suppress epidermal differentiation and promote ORS/bulge differentiation, but rather suppresses hair differentiation and gives rise to sebocyte differentiation. Taken together, these findings provide powerful evidence that the status of Tcf3/Lef complexes has a key role in controlling cell fate lineages in multipotent skin stem cells

    At the Roots of a Never-Ending Cycle

    Get PDF

    Automation and integration of computer vision analysis for immunotherapy research with on-chip cell trapping

    No full text
    A population of fluorescently labeled patient-derived head-neck carcinoma metastatic cell lines (HN137M and HN120M) were trapped together with fluorescently labeled NK cells (NK92MI) in a hydrodynamic cell trapping device with a high throughput matrix of cell trapping structures to observe interactions at different pairing ratios. Human counting and a computer vision algorithm were used to count, track, and label cells and categorize traps by their cell-pairing ratios and cell death occurrence longitudinally. Kaplan-Meier survivability curves were plotted to determine patient-specific susceptibility to immune-mediated tumor killing. The algorithm was more effective than the human at identifying implicit trends and determining susceptible cell lines.</p

    Notch modulates Wnt signalling by associating with Armadillo /β-catenin and regulating its transcriptional activity

    No full text
    The establishment and stability of cell fates during development depend on the integration of multiple signals, which ultimately modulate specific patterns of gene expression. While there is ample evidence for this integration at the level of gene regulatory sequences, little is known about its operation at other levels of cellular activity. Wnt and Notch signalling are important elements of the circuitry that regulates gene expression in development and disease. Genetic analysis has suggested that in addition to convergence on the transcription of specific genes, there are modulatory cross regulatory interactions between these signalling pathways. Here we report that the nodal point of these interactions is an activity of Notch which regulates the activity and the amount of the active/oncogenic form of Armadillo/ß-catenin. This activity of Notch is independent of that induced upon cleavage of its intracellular domain and which mediates transcription through Su(H)/CBF1. The modulatory function of Notch described here, contributes to the establishment of a robust threshold for Wnt signalling which is likely to play important roles in both normal and pathological situation
    corecore