4 research outputs found

    Non-Abelian toplogical superconductors from topological semimetals and related systems under superconducting proximity effect

    Full text link
    Non-Abelian toplogical superconductors are characterized by the existence of {zero-energy} Majorana fermions bound in the quantized vortices. This is a consequence of the nontrivial bulk topology characterized by an {\em odd} Chern number. It is found that in topological semimetals with a single two-bands crossing point all the gapped superconductors are non-Abelian ones. Such a property is generalized to related but more generic systems which will be useful in the search of non-Abelian superconductors and Majorana fermions

    Introduction to topological superconductivity and Majorana fermions

    Full text link
    This short review article provides a pedagogical introduction to the rapidly growing research field of Majorana fermions in topological superconductors. We first discuss in some details the simplest "toy model" in which Majoranas appear, namely a one-dimensional tight-binding representation of a p-wave superconductor, introduced more than ten years ago by Kitaev. We then give a general introduction to the remarkable properties of Majorana fermions in condensed matter systems, such as their intrinsically non-local nature and exotic exchange statistics, and explain why these quasiparticles are suspected to be especially well suited for low-decoherence quantum information processing. We also discuss the experimentally promising (and perhaps already successfully realized) possibility of creating topological superconductors using semiconductors with strong spin-orbit coupling, proximity-coupled to standard s-wave superconductors and exposed to a magnetic field. The goal is to provide an introduction to the subject for experimentalists or theorists who are new to the field, focusing on the aspects which are most important for understanding the basic physics. The text should be accessible for readers with a basic understanding of quantum mechanics and second quantization, and does not require knowledge of quantum field theory or topological states of matter.Comment: 21 pages, 5 figure

    Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor

    Full text link
    Majorana fermions are the only fermionic particles that are expected to be their own antiparticles. While elementary particles of the Majorana type were not identified yet, quasi-particles with Majorana like properties, born from interacting electrons in the solid, were predicted to exist. Here, we present thorough experimental studies, backed by numerical simulations, of a system composed of an aluminum superconductor in proximity to an indium arsenide nanowire, with the latter possessing strong spin-orbit coupling. An induced 1d topological superconductor - supporting Majorana fermions at both ends - is expected to form. We concentrate on the characteristics of a distinct zero bias conductance peak (ZBP), and its splitting in energy, both appearing only with a small magnetic field applied along the wire. The ZBP was found to be robustly tied to the Fermi energy over a wide range of system parameters. While not providing a definite proof of a Majorana state, the presented data and the simulations support strongly its existence
    corecore