13 research outputs found

    Use of Environmental and Physical Stimuli in Cartilage Tissue Engineering

    No full text

    Use of Environmental and Physical Stimuli in Cartilage Tissue Engineering

    No full text

    The Role of Hypoxia in Bone Marrow-Derived Mesenchymal Stem Cells: Considerations for Regenerative Medicine Approaches

    No full text
    Bone marrow-derived mesenchymal stem cells (MSCs) have demonstrated potential for regenerative medicine strategies. Knowledge of the way these cells respond to their environment in in vitro culture and after implantation in vivo is crucial for successful therapy. Oxygen tension plays a pivotal role in both situations. In vivo, a hypoxic environment can lead to apoptosis, but hypoxic preconditioning of MSCs and overexpression of prosurvival genes like Akt can reduce hypoxia-induced cell death. In cell culture, hypoxia can increase proliferation rates and enhance differentiation along the different mesenchymal lineages. Hypoxia also modulates the paracrine activity of MSCs, causing upregulation of various secretable factors, among which are important angiogenic factors such as vascular endothelial growth factor and interleukin-6 (IL6). Finally, hypoxia plays an important role in mobilization and homing of MSCs, primarily by its ability to induce stromal cell-derived factor-1 expression along with its receptor CXCR4. This article reviews the current literature on the effects of hypoxia on MSCs and aims to elucidate its potential role in regenerative medicine strategies

    Effects of Individual Control of pH and Hypoxia in Chondrocyte Culture

    No full text
    Effects of oxygen tension (pO(2)) and pH on gene and protein expression and metabolic activity of human chondrocytes were independently assessed. Chondrocytes were cultured under a range of pH (6.4-7.4) and different pO(2) (5 and 20%) during 5 days in a bioreactor. Effects on gene expression, DNA content, protein expression, and metabolic activity were determined. Linear regression analysis showed that gene expression of type I collagen (COL1), S0X9, and VEGF is significantly lower at acidic pH, while expression of aggrecan, type II collagen, and HIF1A is pH-independent. Higher protein levels of VEGF were found under low pO(2). Acidic pH severely lowered VEGF release into medium, glucose consumption, and lactate production. Extracellular pH proved to more potently influence cell function than oxygen tension, the latter showing down-regulation of COL1 gene expression and up-regulation of VEGF protein under hypoxia. Hypoxic culture inhibits COL1 mRNA expression pH-dependently, while expression of SOX9 is largely hypoxia independent, but pH dependent. Expression of HIF1A and VEGF revealed divergent pH dependencies. Subtle fluctuations in extracellular pH and oxygen tension clearly influence chondrocyte metabolism and marker expression. Sophisticated pH and oxygen control not only allows study of (patho)physiological changes, but also opens new venues in cartilage tissue engineering. (C) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:537-545, 201

    Effects of Cyclic Tensile Strain on Chondrocyte Metabolism: A Systematic Review

    No full text
    Chondrocytes reorganize the extracellular matrix of articular cartilage in response to externally applied loads. Thereby, different loading characteristics lead to different biological responses. Despite of active research in this area, it is still unclear which parts of the extracellular matrix adapt in what ways, and how specific loading characteristics affect matrix changes. This review focuses on the influence of cyclic tensile strain on chondrocyte metabolism in vitro. It also aimed to identify anabolic or catabolic chondrocyte responses to different loading protocols. The key findings show that loading cells up to 3% strain, 0.17 Hz, and 2 h, resulted in weak or no biological responses. Loading between 3-10% strain, 0.17-0.5 Hz, and 2-12 h led to anabolic responses; and above 10% strain, 0.5 Hz, and 12 h catabolic events predominated. However, this review also discusses that various other factors are involved in the remodeling of the extracellular matrix in response to loading, and that parameters like an inflammatory environment might influence the biological response
    corecore