76 research outputs found

    Spectroscopic characteristics of the cyanomethyl anion and its deuterated derivatives

    Full text link
    It has long been suggested that CH2CN- might be a carrier of one of the many poorly characterized diffuse interstellar bands. In this paper, our aim is to study various forms of CH2CN in the interstellar medium. Aim of this paper is to predict spectroscopic characteristics of various forms of CH2CN and its deuterated derivatives. Moreover, we would like to model the interstellar chemistry for making predictions for the column densities of such species around dark cloud conditions. A detailed quantum chemical simulations to present the spectral properties of various forms of the CH2CN. MP2 theory along with the aug-CCPVTZ basis set is used to obtain different spectroscopic constants of CH2CN-, CHDCN- and CD2CN- in the gas phase which are essential to predict rotational spectra of these species. We performed quantum chemical calculation to find out energetically the most stable spin states for these species. We have computed IR and electronic absorption spectra for different forms of CH2CN. Moreover, we have also implemented a large gas-grain chemical network to predict the column densities of various forms of the cyanomethyl radical and its related species. In order to mimic physical conditions around a dense cloud region, the variation of the visual extinction parameters are considered with respect to the hydrogen number density of the simulated cloud. Our quantum chemical calculation reveals that the singlet spin state is the most stable form of cyanomethyl anion and its deuterated forms. For the confirmation of the detection of the cyanomethyl anion and its two deuterated forms, namely, CHDCN- and CD2CN-, we present the rotational spectral information of these species in the Appendix. Our chemical model predicts that the deuterated forms of cyanomethyl radicals (specially the anions) are also reasonably abundant around the dense region of the molecular cloud.Comment: 55 pages, 4 figures, accepted for the publication in A&

    Formation of water and methanol in star forming molecular clouds

    Full text link
    We study the formation of water and methanol in the dense cloud conditions to find the dependence of its production rate on the binding energies, reaction mechanisms, temperatures, and grain site number. We wish to find the effective grain surface area available for chemical reaction and the effective recombination timescales as functions of grain and gas parameters. We used a Monte Carlo simulation to follow the chemical processes occurring on the grain surface. We find that the formation rate of various molecules is strongly dependent on the binding energies. When the binding energies are high, it is very difficult to produce significant amounts of the molecular species. Instead, the grain is found to be full of atomic species. The production rates are found to depend on the number density in the gas phase. We show that the concept of the effective grain surface area, which we introduced in our earlier work, plays a significant role in grain chemistry. We compute the abundance of water and methanol and show that the results strongly depend on the density and composition in the gas phase, as well as various grain parameters. In the rate equation, it is generally assumed that the recombination efficiencies are independent of the grain parameters, and the surface coverage. Presently, our computed parameter α\alpha for each product is found to depend on the accretion rate, the grain parameters and the surface coverage of the grain. We compare our results obtained from the rate equation and the one from the effective rate equation, which includes α\alpha. At the end we compare our results with the observed abundances.Comment: 12 pages, 16 figures in eps forma

    C5H9N Isomers: Pointers to Possible Branched Chain Interstellar Molecules

    Full text link
    The astronomical observation of isopropyl cyanide further stresses the link between the chemical composition of the ISM and molecular composition of the meteorites in which there is a dominance of branched chain amino acids as compared to the straight. However, observations of more branched chain molecules in ISM will firmly establish this link. In the light of this, we have considered C5H9N isomeric group in which the next higher member of the alkyl cyanide and other branched chain isomers belong. High-level quantum chemical calculations have been employed in estimating accurate energies of these isomers. From the results, the only isomer of the group that has been astronomically searched, n-butyl cyanide is not the most stable isomer and therefore, which might explain why its search could only yield upper limits of its column density without a successful detection. Rather, the two most stable isomers of the group are the branched chain isomers, tert-butylnitrile and isobutyl cyanide. Based on the rotational constants of these isomers, it is found that the expected intensity of tert-butylnitrile is the maximum among this isomeric group. Thus, this is proposed as the most probable candidate for astronomical observation. A simple LTE (Local thermodynamic equilibrium) modelling has also been carried out to check the possibility of detecting tert-butyl cyanide in the millimetre-wave region.Comment: 16 pages, 1 figur

    Chemical modeling for predicting the abundances of certain aldimines and amines in hot cores

    Full text link
    We consider six isomeric groups (CH3N, CH5N, C2H5N, C2H7N, C3H7N and C3H9N) to review the presence of amines and aldimines within the interstellar medium (ISM). Each of these groups contains at least one aldimine or amine. Methanimine (CH2NH) from CH3N and methylamine (CH3NH2) from CH5N isomeric group were detected a few decades ago. Recently, the presence of ethanimine (CH3CHNH) from C2H5N isomeric group has been discovered in the ISM. This prompted us to investigate the possibility of detecting any aldimine or amine from the very next three isomeric groups in this sequence: C2H7N, C3H7N and C3H9N. We employ high-level quantum chemical calculations to estimate accurate energies of all the species. According to enthalpies of formation, optimized energies, and expected intensity ratio, we found that ethylamine (precursor of glycine) from C2H7N isomeric group, (1Z)-1-propanimine from C3H7N isomeric group, and trimethylamine from C3H9N isomeric group are the most viable candidates for the future astronomical detection. Based on our quantum chemical calculations and from other approximations (from prevailing similar types of reactions), a complete set of reaction pathways to the synthesis of ethylamine and (1Z)-1-propanimine is prepared. Moreover, a large gas-grain chemical model is employed to study the presence of these species in the ISM. Our modeling results suggest that ethylamine and (1Z)-1-propanimine could efficiently be formed in hot-core regions and could be observed with present astronomical facilities. Radiative transfer modeling is also implemented to additionally aid their discovery in interstellar space.Comment: 32 pages, 18 Figures, Accepted for publication in the Astrophysical Journa
    • …
    corecore