2 research outputs found

    Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice

    Get PDF
    Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis

    Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice

    Get PDF
    Toxoplasma gondii is an intracellular apicomplexan parasite, which can cause a serious infectious disease in pregnant women and immunocompromised individuals. Therefore, the development of a polyvalent vaccine consisting of all stages of the parasite life cycle using the epitopes from tachyzoites, bradyzoites, and sporozoites is likely to be required for complete protective immunity. In this study, we designed protein vaccine candidate based on the prediction of specific epitopes (i.e., B cell and T cell) from three Toxoplasma gondii antigens. The MRS protein (MIC3: 30–180, ROP8: 85–185, and SAG1: 85–235) was expressed in Escherichia coli, and purification was performed using a HisTrap HP column and then we evaluated immunogenicity and protective property in BALB/c mice. Seventy-two mice were randomly divided into six groups, including three vaccinations (i.e., MRS, MRS-Freund, and MRS-Calcium Phosphate Nanoparticles (MRS-CaPNs)) and three control (i.e., Phosphate-buffered saline, Freund, and CaPNs) groups. All groups were immunized three times via subcutaneous injection within three-week intervals. In the vaccination groups, the BALB/c mice were injected with 20 μg of MRS protein for the first time and 10 μg of MRS for the next two times. Antibodies, cytokines, and splenocytes proliferation in the immunized mice were assayed using the enzyme-linked immunosorbent assay. Protective efficacy was analyzed by challenging the immunized mice with T. gondii of RH strain. Antibody, cytokine, and lymphocyte proliferation assays showed that the mice immunized with MRS induced stronger humoral and T helper type 1 cell-mediated immune responses, compared to the control mice. However, co-immunization with adjuvants (i.e., Freund and CaNPs) resulted in impaired immune responses. Effective protection against the parasite achieved an increase in survival time in the immunized mice, especially in the MRS-CaNPs group. The obtained results of the present study demonstrated that multi-epitope protein vaccination, MRS, is a potential strategy against toxoplasmosis infection. In addition, the vaccine co-delivered with CaPNs could provide an important key for vaccine candidate to control T. gondii infection. © 2021 Elsevier Ltd Author keywords Calcium phosphate; Freund; Multi-epitope; Protein vaccine; Toxoplasma gondi
    corecore