63 research outputs found

    Resveratrol Acts Not through Anti-Aggregative Pathways but Mainly via Its Scavenging Properties against Aβ and Aβ-Metal Complexes Toxicity

    Get PDF
    It has been recently suggested that resveratrol can be effective in slowing down Alzheimer's disease (AD) development. As reported in many biochemical studies, resveratrol seems to exert its neuro-protective role through inhibition of β-amyloid aggregation (Aβ), by scavenging oxidants and exerting anti-inflammatory activities. In this paper, we demonstrate that resveratrol is cytoprotective in human neuroblastoma cells exposed to Aβ and or to Aβ-metal complex. Our findings suggest that resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties

    CART Peptide Is a Potential Endogenous Antioxidant and Preferentially Localized in Mitochondria

    Get PDF
    The multifunctional neuropeptide Cocaine and Amphetamine Regulated Transcript (CART) is secreted from hypothalamus, pituitary, adrenal gland and pancreas. It also can be found in circulatory system. This feature suggests a general role for CART in different cells. In the present study, we demonstrate that CART protects mitochondrial DNA (mtDNA), cellular proteins and lipids against the oxidative action of hydrogen peroxide, a widely used oxidant. Using cis-parinaric acid as a sensitive reporting probe for peroxidation in membranes, and a lipid-soluble azo initiator of peroxyl radicals, 2,2′-Azobis(2,4-dimethylvaleronitrile) we found that CART is an antioxidant. Furthermore, we found that CART localized to mitochondria in cultured cells and mouse brain neuronal cells. More importantly, pretreatment with CART by systemic injection protects against a mouse oxidative stress model, which mimics the main features of Parkinson's disease. Given the unique molecular structure and biological features of CART, we conclude that CART is an antioxidant peptide (or antioxidant hormone). We further propose that it may have strong therapeutic properties for human diseases in which oxidative stress is strongly involved such as Parkinson's disease

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs

    Protective Effects of Walnut Extract Against Amyloid Beta Peptide-Induced Cell Death and Oxidative Stress in PC12 Cells

    Get PDF
    Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death

    Cholinesterases: Structure, Role, and Inhibition

    Get PDF
    Acetilkolinesteraza (AChE; E.C. 3.1.1.7) i butirilkolinesteraza (BChE; E.C. 3.1.1.8) enzimi su koji se zbog svoje uloge u organizmu intenzivno istražuju unutar područja biomedicine i toksikologije. Iako strukturno homologni, ovi enzimi razlikuju se prema katalitičkoj aktivnosti, odnosno specifi čnosti prema supstratima koje mogu hidrolizirati te selektivnosti za vezanje mnogih liganada. U ovom radu dan je pregled dosadašnjih istraživanja kolinesteraza i njihovih interakcija s ligandima i inhibitorima te su izdvojene aminokiseline aktivnog mjesta koje sudjeluju u tim interakcijama.Enzymes acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BChE; E.C. 3.1.1.8) have intensively been investigated in biomedicine and toxicology due to important role in organisms. Even if structurally homologous, they differ in catalytic activity, specificity, for substrates, and selectivity in binding to many ligands. This paper compiles the results of research on cholinesterases and their interactions with ligands and inhibitors, and identifies amino acids of active sites involved in these interactions
    corecore