101 research outputs found
Activation of GATA4 gene expression at the early stage of cardiac specification
The exclusionary protected area-based approach to biodiversity conservation has succeeded at several places,but at a significant social cost and conflict, especially in the developing country tropics.More inclusive approaches, including community-based conservation (CBC), its subset enterprise-based conservation(EBC), and payments-based conservation (PES) programs, have been tried in the past 15 years. A brief summary of the literature on socio-economic impacts of the exclusionary approach suggests that, although detailed studies and documentation is missing,impacts are significant, and the ethical argument against forced displacement quite strong. We then examine the potential of non exclusionary approaches from a broader perspective that values biodiversity gains as well as socio-economic ones. Our review suggests that (a) comprehensive socio–ecological and comparative studies of such initiatives are surprisingly scarce, (b) enterprise-based conservation offers some potential if design flaws, poor implementation, assumptions about homogeneous communities, and inattention to tenurial change and security are addressed, (c) payments-based programs require caution because of their focus on economic efficiency, and simplified assumptions regarding the nature of rights, biological information,monitoring costs, and state interventions, and (d) the alternatives
to exclusion have often not been given adequate state support and space to function, nor is the ongoing neoliberalization of the political-economic system conducive to giving them that space, except when they fit the direction of this larger process
Role of Endothelial Soluble Epoxide Hydrolase in Cerebrovascular Function and Ischemic Injury
Soluble Epoxide Hydrolase (sEH) is a key enzyme in the metabolism and termination of action of epoxyeicosatrienoic acids, derivatives of arachidonic acid, which are protective against ischemic stroke. Mice lacking sEH globally are protected from injury following stroke; however, little is known about the role of endothelial sEH in brain ischemia. We generated transgenic mice with endothelial-specific expression of human sEH (Tie2-hsEH), and assessed the effect of transgenic overexpression of endothelial sEH on endothelium-dependent vascular reactivity and ischemic injury following middle cerebral artery occlusion (MCAO). Compared to wild-type, male Tie2-hsEH mice exhibited impaired vasodilation in response to stimulation with 1 µM acetylcholine as assessed by laser-Doppler perfusion monitoring in an in-vivo cranial window preparation. No difference in infarct size was observed between wild-type and Tie2-hsEH male mice. In females, however, Tie2-hsEH mice sustained larger infarcts in striatum, but not cortex, compared to wild-type mice. Sex difference in ischemic injury was maintained in the cortex of Tie2-hsEH mice. In the striatum, expression of Tie2-hsEH resulted in a sex difference, with larger infarct in females than males. These findings demonstrate that transgenic expression of sEH in endothelium results in impaired endothelium-dependent vasodilation in the cerebral circulation, and that females are more susceptible to enhanced ischemic damage as a result of increased endothelial sEH than males, especially in end-arteriolar striatal region
ABRF Proteome Informatics Research Group (iPRG) 2016 Study: Inferring Proteoforms from Bottom-up Proteomics Data.
This report presents the results from the 2016 Association of Biomolecular Resource Facilities Proteome Informatics Research Group (iPRG) study on proteoform inference and false discovery rate (FDR) estimation from bottom-up proteomics data. For this study, 3 replicate Q Exactive Orbitrap liquid chromatography-tandom mass spectrometry datasets were generated from each of
Avian assemblages at bird baths: a comparison of urban and rural bird baths in Australia
Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas
Validation of the Cardiosphere Method to Culture Cardiac Progenitor Cells from Myocardial Tissue
At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs) can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs). Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing) to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential) of CDCs.CPCs were expanded from human endomyocardial biopsies (n = 160), adult bi-transgenic MerCreMer-Z/EG mice (n = 6), adult C57BL/6 mice (n = 18), adult GFP(+) C57BL/6 transgenic mice (n = 3), Yucatan mini pigs (n = 67), adult SCID beige mice (n = 8), and adult Wistar-Kyoto rats (n = 80). Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit(+)), endothelial cells (CD31(+), CD34(+)), and mesenchymal cells (CD90(+)). Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential.This study demonstrates that direct culture and expansion of CPCs from myocardial tissue is simple, straightforward, and reproducible when appropriate techniques are used
Sex- and isoform-specific mechanism of neuroprotection by transgenic expression of P450 epoxygenase in vascular endothelium
Cytochrome P450 epoxygenases (CYP) metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which exhibit vasodilatory, anti-inflammatory and neuroprotective actions in experimental cerebral ischemia. We evaluated the effect of endothelial-specific CYP overexpression on cerebral blood flow, inflammatory cytokine expression and tissue infarction after focal cerebral ischemia in transgenic mice
Teleoncology in the Department of Defense: A tale of two systems
ABSTRACT Two telemedicine networks were developed for the purpose of conducting multidisciplinary oncology ("teleoncology") conferences. The infrastructure of each system differed: one system was Internet-based; the other was delivered via Integrated Services Digital Network (ISDN) lines. The purpose of this study was to describe the infrastructure and cost, consultative process, technical aspects, and conference format of the two teleoncology programs. The two systems' technical aspects, participant satisfaction with the systems, and conference participation were compared qualitatively. Assessment of the technical aspects of the systems suggested that each had distinct advantages. Survey results indicated that provider satisfaction with the technical and logistical aspects of each type of teleoncology conference was high. The present study may prove helpful for individuals who are considering implementing their own teleoncology programs. T ELEM ED ICIN E H A S BEEN D ESCRIBED as the practice of medicine at a distance. 1 Telemedicine applications have been used in nearly every field of medicine, including radiology, psychiatry, dermatology, and cardiology. One aspect of telemedicine that has become increasingly common is teleoncology, the delivery of oncology services from a distance. 1 Teleoncology programs offer a variety of potential benefits, including enhancing primary care managers' access to referrals, expand opportunities for continuing medical education (CME) credits, reduction of unnecessary referrals, and smooth coordination of patient care. To date, only a handful of studies have examined the topic of teleoncology. Investigators have looked at the use of interactive video to provide psychosocial support, 2 the use of interactive video and proxy examiners to provide direct patient care, 3 and the use of teleoncology to facilitate consultation by cancer specialists to geographically remote primary care providers
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
- …