10 research outputs found

    UGT2B17 copy number gain in a large ankylosing spondylitis multiplex family

    No full text
    Abstract Background The primary objective of this study is to identify novel copy number variations (CNVs) associated with familial ankylosing spondylitis (AS). A customized genome-wide microarray was designed to detect CNVs and applied to a multiplex AS family with six (6) affected family members. CNVs were detected using the built-in DNA analytics aberration detection method-2 (ADM-2) algorithm. Gene enrichment analysis was performed to observe the segregation. Subsequent validation was performed using real time quantitative fluorescence polymerase reaction (QF-PCR). The frequency of copy number variation for the UGT2B17 gene was then performed on two well-defined AS cohorts. Fisher exact test was performed to quantify the association. Results Our family-based analysis revealed ten gene-enriched CNVs that segregate with all six family members affected with AS. Based on the proposed function and the polymorphic nature of the UGT2B17 gene, the UGT2B17 gene CNV was selected for validation using real time QF-PCR with full concordance. The frequency of two copies of the UGT2B17 gene CNV was 0.41 in the Newfoundland AS cases and 0.35 in the Newfoundland controls (OR = 1.26(0.99-1.59); p < 0.05)), whereas the frequency of two (2) copies of the UGT2B17 gene CNV was 0.40 in the Alberta AS cases and 0.39 in the Alberta controls (OR = 1.05(95% CI: 0.83-1.33); p < 0.71)). Conclusions A genome-wide microarray interrogation of a large multiplex AS family revealed segregation of the UGT2B17 gene CNV among all affected family members. The association of the UGT2B17 CNV with AS is particularly interesting given the recent association of this CNV with osteoporosis and the proposed function as it encodes a key enzyme that inhibits androgens. However, two copies of the UGT2B17 gene CNV were only marginally significant in a uniplex AS cohort from Newfoundland but not in a uniplex AS cohort from Alberta

    Mutational Landscape of Autism Spectrum Disorder Brain Tissue

    No full text
    Rare post-zygotic mutations in the brain are now known to contribute to several neurodevelopmental disorders, including autism spectrum disorder (ASD). However, due to the limited availability of brain tissue, most studies rely on estimates of mosaicism from peripheral samples. In this study, we undertook whole exome sequencing on brain tissue from 26 ASD brain donors from the Harvard Brain Tissue Resource Center (HBTRC) and ascertained the presence of post-zygotic and germline mutations categorized as pathological, including those impacting known ASD-implicated genes. Although quantification did not reveal enrichment for post-zygotic mutations compared with the controls (n = 15), a small number of pathogenic, potentially ASD-implicated mutations were identified, notably in TRAK1 and CLSTN3. Furthermore, germline mutations were identified in the same tissue samples in several key ASD genes, including PTEN, SC1A,&nbsp;CDH13, and CACNA1C. The establishment of tissue resources that are available to the scientific community will facilitate the discovery of new mutations for ASD and other neurodevelopmental disorders

    A dominant RAD51C pathogenic splicing variant predisposes to breast and ovarian cancer in the Newfoundland population due to founder effect

    No full text
    Abstract Background RAD51C is important in DNA repair and individuals with pathogenic RAD51C variants have increased risk of hereditary breast and ovarian cancer syndrome (HBOC), an autosomal dominant genetic predisposition to early onset breast and/or ovarian cancer. Methods Five female HBOC probands sequenced negative for moderate‐ and high‐risk genes but shared a recurrent variant of uncertain significance in RAD51C (NM_058216.3: c.571 + 4A > G). Participant recruitment was followed by haplotype and case/control analyses, RNA splicing analysis, gene and protein expression assays, and Sanger sequencing of tumors. Results The RAD51C c.571 + 4A > G variant segregates with HBOC, with heterozygotes sharing a 5.07 Mbp haplotype. RAD51C c.571 + 4A > G is increased ~52‐fold in the Newfoundland population compared with the general Caucasian population and positive population controls share disease‐associated alleles, providing evidence of a founder effect. Splicing analysis confirmed in silico predictions that RAD51C c.571 + 4A > G causes exon 3 skipping, creating an immediate premature termination codon. Gene and protein expression were significantly reduced in a RAD51C c.571 + 4G > A heterozygote compared with a wild‐type relative. Sanger sequencing of tumors from two probands indicates loss‐of‐heterozygosity, suggesting loss of function. Conclusion The RAD51C c.571 + 4A > G variant affects mRNA splicing and should be re‐classified as pathogenic according to American College of Medical Genetics and Genomics guidelines

    A pathogenic deletion in Forkhead Box L1 (FOXL1) identifies the first otosclerosis (OTSC) gene

    No full text
    Otosclerosis is a bone disorder of the otic capsule and common form of late-onset hearing impairment. Considered a complex disease, little is known about its pathogenesis. Over the past 20 years, ten autosomal dominant loci (OTSC1-10) have been mapped but no genes identified. Herein, we map a new OTSC locus to a 9.96 Mb region within the FOX gene cluster on 16q24.1 and identify a 15 bp coding deletion in Forkhead Box L1 co-segregating with otosclerosis in a Caucasian family. Pre-operative phenotype ranges from moderate to severe hearing loss to profound sensorineural loss requiring a cochlear implant. Mutant FOXL1 is both transcribed and translated and correctly locates to the cell nucleus. However, the deletion of 5 residues in the C-terminus of mutant FOXL1 causes a complete loss of transcriptional activity due to loss of secondary (alpha helix) structure. FOXL1 (rs764026385) was identified in a second unrelated case on a shared background. We conclude that FOXL1 (rs764026385) is pathogenic and causes autosomal dominant otosclerosis and propose a key inhibitory role for wildtype Foxl1 in bone remodelling in the otic capsule. New insights into the molecular pathology of otosclerosis from this study provide molecular targets for non-invasive therapeutic interventions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-021-02381-1

    A common variant in CLDN14 causes precipitous, prelingual sensorineural hearing loss in multiple families due to founder effect

    Get PDF
    Genetic isolates provide unprecedented opportunities to identify pathogenic mutations and explore the full natural history of clinically heterogeneous phenotypes such as hearing loss. We noticed a unique audioprofile, characterized by prelingual and rapid deterioration of hearing thresholds at frequencies \u3e0.5 kHz in several adults from unrelated families from the island population of Newfoundland. Targeted serial Sanger sequencing of probands for deafness alleles (n = 23) that we previously identified in this founder population was negative. Whole exome sequencing in four members of the largest family (R2010) identified a CLDN14 (DFNB29) variant [c.488C\u3eT; p. (Ala163Val)], likely pathogenic, sensorineural hearing loss, autosomal recessive. Although not associated with deafness or disease, CLDN14 p.(Ala163Val) has been previously reported as a variant of uncertain significance (VUS). Targeted sequencing of 169 deafness probands identified one homozygote and one heterozygous carrier. Genealogical studies, cascade sequencing and haplotype analysis across four unrelated families showed all subjects with the unique audioprofile (n = 12) were also homozygous for p.(Ala163Val) and shared a 1.4 Mb DFNB29-associated haplotype on chromosome 21. Most significantly, sequencing 175 population controls revealed 1% of the population are heterozygous for CLDN14 p.(Ala163Val), consistent with a major founder effect in Newfoundland. The youngest CLDN14 [c.488C\u3eT; p.(Ala163Val)] homozygote passed newborn screening and had normal hearing thresholds up to 3 years of age, which then deteriorated to a precipitous loss \u3e1 kHz during the first decade. Our study suggests that genetic testing may be necessary to identify at-risk children in time to prevent speech, language and developmental delay
    corecore