27 research outputs found

    TRPA1 and Sympathetic Activation Contribute to Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to Diesel Exhaust

    Get PDF
    Background: Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias

    Overt and Latent Cardiac Effects of Ozone Inhalation in Rats: Evidence for Autonomic Modulation and Increased Myocardial Vulnerability

    Get PDF
    Background: Ozone (O3) is a well-documented respiratory oxidant, but increasing epidemiological evidence points to extrapulmonary effects, including positive associations between ambient O3 concentrations and cardiovascular morbidity and mortality

    Hypoxia Stress Test Reveals Exaggerated Cardiovascular Effects in Hypertensive Rats After Exposure to the Air Pollutant Acrolein

    Get PDF
    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in susceptible populations. Despite increased risk, adverse responses are often delayed and require additional stress tests to reveal latent effects of exposure. The goal of this study was to use an episode of “transient hypoxia” as an extrinsic stressor to uncover latent susceptibility to environmental pollutants in a rodent model of hypertension. We hypothesized that exposure to acrolein, an unsaturated aldehyde and mucosal irritant found in cigarette smoke, diesel exhaust, and power plant emissions, would increase cardiopulmonary sensitivity to hypoxia, particularly in hypertensive rats. Spontaneously hypertensive and Wistar Kyoto (normotensive) rats, implanted with radiotelemeters, were exposed once for 3h to 3 ppm acrolein gas or filtered air in whole-body plethysmograph chambers and challenged with a 10% oxygen atmosphere (10min) 24h later. Acrolein exposure increased heart rate, blood pressure, breathing frequency, and minute volume in hypertensive rats and also increased the heart rate variability parameter LF, suggesting a potential role for increased sympathetic tone. Normotensive rats only had increased blood pressure during acrolein exposure. The hypoxia stress test after acrolein exposure revealed increased diastolic blood pressure only in hypertensive rats and increased minute volume and expiratory time only in normotensive rats. These results suggest that hypertension confers exaggerated sensitivity to air pollution and that the hypoxia stress test is a novel tool to reveal the potential latent effects of air pollution exposure

    Increased Nonconducted P-Wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats

    Get PDF
    Background: Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that are reflected in the electrocardiogram (ECG), including altered cardiac rhythm, myocardial ischemia, and reduced heart rate variability (HRV). The sensitivity and reliability of ECG-derived parameters as indicators of the cardiovascular toxicity of PM in rats are unclear. Objective: We hypothesized that spontaneously hypertensive (SH) rats are more susceptible to the development of PM-induced arrhythmia, altered ECG morphology, and reduced HRV than are Wistar Kyoto (WKY) rats, a related strain with normal blood pressure. Methods: We exposed rats once by nose-only inhalation for 4 hr to residual oil fly ash (ROFA), an emission source particle rich in transition metals, or to air and then sacrificed them 1 or 48 hr later. Results: ROFA-exposed SH rats developed nonconducted P-wave arrhythmias but no changes in ECG morphology or HRV. We found no ECG effects in ROFA-exposed WKY rats. ROFA-exposed SH rats also had greater pulmonary injury, neutrophil infiltration, and serum C-reactive protein than did ROFA-exposed WKY rats. Conclusions: These results suggest that cardiac arrhythmias may be an early sensitive indicator of the propensity for PM inhalation to modify cardiovascular function. Originally published Environmental Health Perspectives, Vol. 117, No. 5, May 200

    Whole and Particle-Free Diesel Exhausts Differentially Affect Cardiac Electrophysiology, Blood Pressure, and Autonomic Balance in Heart Failure–Prone Rats

    Get PDF
    Epidemiological studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular (CV) events, especially in those with preexisting CV disease. Diesel engine exhaust is a key contributor to urban ambient PM and gaseous pollutants. To determine the role of gaseous and particulate components in diesel exhaust (DE) cardiotoxicity, we examined the effects of a 4-h inhalation of whole DE (wDE) (target PM concentration: 500 µg/m3) or particle-free filtered DE (fDE) on CV physiology and a range of markers of cardiopulmonary injury in hypertensive heart failure–prone rats. Arterial blood pressure (BP), electrocardiography, and heart rate variability (HRV), an index of autonomic balance, were monitored. Both fDE and wDE decreased BP and prolonged PR interval during exposure, with more effects from fDE, which additionally increased HRV triangular index and decreased T-wave amplitude. fDE increased QTc interval immediately after exposure, increased atrioventricular (AV) block Mobitz II arrhythmias shortly thereafter, and increased serum high-density lipoprotein 1 day later. wDE increased BP and decreased HRV root mean square of successive differences immediately postexposure. fDE and wDE decreased heart rate during the 4th hour of postexposure. Thus, DE gases slowed AV conduction and ventricular repolarization, decreased BP, increased HRV, and subsequently provoked arrhythmias, collectively suggesting parasympathetic activation; conversely, brief BP and HRV changes after exposure to particle-containing DE indicated a transient sympathetic excitation. Our findings suggest that whole- and particle-free DE differentially alter CV and autonomic physiology and may potentially increase risk through divergent pathways

    Dobutamine “Stress” Test and Latent Cardiac Susceptibility to Inhaled Diesel Exhaust in Normal and Hypertensive Rats

    Get PDF
    Background: Exercise “stress” testing is a screening tool used to determine the amount of stress for which the heart can compensate before developing abnormal rhythm or ischemia, particularly in susceptible persons. Although this approach has been used to assess risk in humans exposed to air pollution, it has never been applied to rodent studies

    Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats

    Get PDF
    Air pollution exposure affects autonomic function, heart rate, blood pressure and left ventricular function. While the mechanism for these effects is uncertain, several studies have reported that air pollution exposure modifies activity of the carotid body, the major organ that senses changes in arterial oxygen and carbon dioxide levels, and elicits downstream changes in autonomic control and cardiac function

    Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure–Prone Rats

    Get PDF
    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel engine exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance of normal cardiac function. To explore this putative mechanism, we examined cardiophysiologic responses to DE inhalation in a model of aged heart failure–prone rats without signs or symptoms of overt heart failure. We hypothesized that acute DE exposure would alter heart rhythm, cardiac electrophysiology, and ventricular performance and dimensions consistent with autonomic imbalance while increasing biochemical markers of toxicity. Spontaneously hypertensive heart failure rats (16 months) were exposed once to whole DE (4h, target PM2.5 concentration: 500 µg/m3) or filtered air. DE increased multiple heart rate variability (HRV) parameters during exposure. In the 4h after exposure, DE increased cardiac output, left ventricular volume (end diastolic and systolic), stroke volume, HRV, and atrioventricular block arrhythmias while increasing electrocardiographic measures of ventricular repolarization (i.e., ST and T amplitudes, ST area, T-peak to T-end duration). DE did not affect heart rate relative to air. Changes in HRV positively correlated with postexposure changes in bradyarrhythmia frequency, repolarization, and echocardiographic parameters. At 24h postexposure, DE-exposed rats had increased serum C-reactive protein and pulmonary eosinophils. This study demonstrates that cardiac effects of DE inhalation are likely to occur through changes in autonomic balance associated with modulation of cardiac electrophysiology and mechanical function and may offer insights into the adverse health effects of traffic-related air pollutants
    corecore