98 research outputs found

    Mesozooplankton grazing during the Phaeocystis globosa bloom

    Get PDF
    Abstract During spring blooms 1998 and 1999, three complementary methods were used to evaluate the in situ feeding activities of the dominant copepod species of the Belgian coastal zone: gut pigment content analysis using HPLC, the 14 C tracer method, and cell count experiments. The results obtained by all three methods consistently showed that Phaeocystis globosa is not an adequate food source for the spring copepods in the Belgian coastal zone. Our results demonstrated that, among the potential prey, copepods strongly selected diatoms and microzooplankton, and that these types of prey accounted for the major part of the ingested carbon. However, diatoms and microzooplankton ingestion did not always seem sufficient in terms of carbon to avoid food limitation. Comparison of clearance rates exerted on different potential prey types during the P. globosa peak with those before and after the P. globosa peak showed that the copepods' feeding pressure on diatoms was reduced during the P. globosa peak while that on microzooplankton was not. The low grazing pressure on P. globosa, together with the preferential grazing on diatoms, which reduces the competition for nutrients, and the predation on microzooplankton organisms, which reduces the microzooplankton grazing pressure on P. globosa cells, are likely to favour the P. globosa bloom in the Southern Bight of the North Sea.

    HIV-1 Nef Targets MHC-I and CD4 for Degradation Via a Final Common β-COP–Dependent Pathway in T Cells

    Get PDF
    To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, β-COP. Moreover, we demonstrate that Nef contains two separable β-COP binding sites. One site, an arginine (RXR) motif in the N-terminal α helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef

    Combination immunotherapy and active-specific tumor cell vaccination augments anti-cancer immunity in a mouse model of gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Active-specific immunotherapy used as an adjuvant therapeutic strategy is rather unexplored for cancers with poorly characterized tumor antigens like gastric cancer. The aim of this study was to augment a therapeutic immune response to a low immunogenic tumor cell line derived from a spontaneous gastric tumor of a CEA424-SV40 large T antigen (CEA424-SV40 TAg) transgenic mouse.</p> <p>Methods</p> <p>Mice were treated with a lymphodepleting dose of cyclophosphamide prior to reconstitution with syngeneic spleen cells and vaccination with a whole tumor cell vaccine combined with GM-CSF (a treatment strategy abbreviated as LRAST). Anti-tumor activity to subcutaneous tumor challenge was examined in a prophylactic as well as a therapeutic setting and compared to corresponding controls.</p> <p>Results</p> <p>LRAST enhances tumor-specific T cell responses and efficiently inhibits growth of subsequent transplanted tumor cells. In addition, LRAST tended to slow down growth of established tumors. The improved anti-tumor immune response was accompanied by a transient decrease in the frequency and absolute number of CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+ </sup>T cells (Tregs).</p> <p>Conclusions</p> <p>Our data support the concept that whole tumor cell vaccination in a lymphodepleted and reconstituted host in combination with GM-CSF induces therapeutic tumor-specific T cells. However, the long-term efficacy of the treatment may be dampened by the recurrence of Tregs. Strategies to counteract suppressive immune mechanisms are required to further evaluate this therapeutic vaccination protocol.</p
    corecore