270 research outputs found

    Parkinsonism: Neurological Considerations

    Get PDF

    Diastematomyelia: A Treatable Lesion In Infancy And Childhood With Case Report

    Get PDF

    A remarkable recurrent nova in M 31: The 2010 eruption recovered and evidence of a six-month period

    Full text link
    The Andromeda Galaxy recurrent nova M31N 2008-12a has been caught in eruption nine times. Six observed eruptions in the seven years from 2008 to 2014 suggested a duty cycle of ~1 year, which makes this the most rapidly recurring system known and the leading single-degenerate Type Ia Supernova progenitor candidate; but no 2010 eruption has been found so far. Here we present evidence supporting the recovery of the 2010 eruption, based on archival images taken at and around the time. We detect the 2010 eruption in a pair of images at 2010 Nov 20.52 UT, with a magnitude of m_R = 17.84 +/- 0.19. The sequence of seven eruptions shows significant indications of a duty cycle slightly shorter than one year, which makes successive eruptions occur progressively earlier in the year. We compared three archival X-ray detections with the well observed multi-wavelength light curve of the 2014 eruption to accurately constrain the time of their optical peaks. The results imply that M31N 2008-12a might have in fact a recurrence period of ~6 months (175 +/- 11 days), making it even more exceptional. If this is the case, then we predict that soon two eruptions per year will be observable. Furthermore, we predict the next eruption will occur around late Sep 2015. We encourage additional observations.Comment: 4 pages, 3 figures, 2 tables; submitted to A&A Letter

    Difference image photometry with bright variable backgrounds

    Full text link
    Over the last two decades the Andromeda Galaxy (M31) has been something of a test-bed for methods aimed at obtaining accurate time-domain relative photometry within highly crowded fields. Difference imaging methods, originally pioneered towards M31, have evolved into sophisticated methods, such as the Optimal Image Subtraction (OIS) method of Alard & Lupton (1998), that today are most widely used to survey variable stars, transients and microlensing events in our own Galaxy. We show that modern difference image (DIA) algorithms such as OIS, whilst spectacularly successful towards the Milky Way bulge, may perform badly towards high surface brightness targets such as the M31 bulge. Poor results can occur in the presence of common systematics which add spurious flux contributions to images, such as internal reflections, scattered light or fringing. Using data from the Angstrom Project microlensing survey of the M31 bulge, we show that very good results are usually obtainable by first performing careful photometric alignment prior to using OIS to perform point-spread function (PSF) matching. This separation of background matching and PSF matching, a common feature of earlier M31 photometry techniques, allows us to take full advantage of the powerful PSF matching flexibility offered by OIS towards high surface brightness targets. We find that difference images produced this way have noise distributions close to Gaussian, showing significant improvement upon results achieved using OIS alone. We show that with this correction light-curves of variable stars and transients can be recovered to within ~10 arcseconds of the M31 nucleus. Our method is simple to implement and is quick enough to be incorporated within real-time DIA pipelines. (Abridged)Comment: 12 pages. Accepted for publication in MNRAS. Includes an expanded discussion of DIA testing and results, including additional lightcurve example
    • …
    corecore