387 research outputs found

    Domain-Walls in Einstein-Gauss-Bonnet Bulk

    Full text link
    We investigate the dynamics of a d-dimensional domain wall (DW) in a d+1-dimensional Einstein-Gauss-Bonnet (EGB) bulk. Exact effective potential induced by the Gauss-Bonnet (GB) term on the wall is derived. In the absence of the GB term we recover the familiar gravitational and anti-harmonic oscillator potentials. Inclusion of the GB correction gives rise to a minimum radius of bounce for the Friedmann-Robertson-Walker (FRW) universe expanding with a negative pressure on the DW.Comment: 4 pages and 4 figures, to appear in PR

    Cylindrical thin-shell wormholes and energy conditions

    Get PDF
    We prove the impossibility of cylindrical thin-shell wormholes supported by matter satisfying the energy conditions everywhere, under reasonable assumptions about the asymptotic behaviour of the - in general different - metrics at each side of the throat. In particular, we reproduce for singular sources previous results corresponding to flat and conical asymptotics, and extend them to a more general asymptotic behaviour. Besides, we establish necessary conditions for the possibility of non exotic cylindrical thin-shell wormholes.Comment: 9 pages; slightly improved version of the article accepted in Int. J. Mod. Phys.

    Stability of thin-shell wormholes supported by ordinary matter in Einstein-Maxwell-Gauss-Bonnet gravity

    Full text link
    Recently in (Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903(E) (2008)) a thin-shell wormhole has been introduced in 5-dimensional Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity which was supported by normal matter. We wish to consider this solution and investigate its stability. Our analysis shows that for the Gauss-Bonnet (GB) parameter α<0,\alpha <0, stability regions form for a narrow band of finely-tuned mass and charge. For the case α>0\alpha >0, we iterate once more that no stable, normal matter thin-shell wormhole exists.Comment: 11 pages, 4 figure

    Velocity dominated singularities in the cheese slice universe

    Full text link
    We investigate the properties of spacetimes resulting from matching together exact solutions using the Darmois matching conditions. In particular we focus on the asymptotically velocity term dominated property (AVTD). We propose a criterion that can be used to test if a spacetime constructed from a matching can be considered AVTD. Using the Cheese Slice universe as an example, we show that a spacetime constructed from a such a matching can inherit the AVTD property from the original spacetimes. Furthermore the singularity resulting from this particular matching is an AVTD singularity.Comment: 11 pages, 3 figures, accepted for publication in the International Journal of Modern Physics

    Higher-Dimensional Bulk Wormholes and their Manifestations in Brane Worlds

    Get PDF
    There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type.Comment: 21 pages, 1 figur

    Lovelock Thin-Shell Wormholes

    Full text link
    We construct the asymptotically flat charged thin-shell wormholes of Lovelock gravity in seven dimensions by cut-and-paste technique, and apply the generalized junction conditions in order to calculate the energy-momentum tensor of these wormholes on the shell. We find that for negative second order and positive third order Lovelock coefficients, there are thin-shell wormholes that respect the weak energy condition. In this case, the amount of normal matter decreases as the third order Lovelock coefficient increases. For positive second and third order Lovelock coefficients, the weak energy condition is violated and the amount of exotic matter decreases as the charge increases. Finally, we perform a linear stability analysis against a symmetry preserving perturbation, and find that the wormholes are stable provided the derivative of surface pressure density with respect to surface energy density is negative and the throat radius is chosen suitable.Comment: 13 pages, 6 figure

    Higher dimensional thin-shell wormholes in Einstein-Yang-Mills-Gauss-Bonnet gravity

    Full text link
    We present thin-shell wormhole solutions in Einstein-Yang-Mills-Gauss-Bonnet (EYMGB) theory in higher dimensions d\geq5. Exact black hole solutions are employed for this purpose where the radius of thin-shell lies outside the event horizon. For some reasons the cases d=5 and d>5 are treated separately. The surface energy-momentum of the thin-shell creates surface pressures to resist against collapse and rendering stable wormholes possible. We test the stability of the wormholes against spherical perturbations through a linear energy-pressure relation and plot stability regions. Apart from this restricted stability we investigate the possibility of normal (i.e. non-exotic) matter which satisfies the energy conditions. For negative values of the Gauss-Bonnet (GB) parameter we obtain such physical wormholes.Comment: 9 pages, 6 figures. Dedicated to the memory of Rev. Ibrahim Eken (1927-2010) of Turke

    The Post-Quasistatic Approximation as a test bed for Numerical Relativity

    Full text link
    It is shown that observers in the standard ADM 3+1 treatment of matter are the same as the observers used in the matter treatment of Bondi: they are comoving and local Minkowskian. Bondi's observers are the basis of the post--quasitatic approximation (PQSA) to study a contracting distribution of matter. This correspondence suggests the possibility of using the PQSA as a test bed for Numerical Relativity. The treatment of matter by the PQSA and its connection with the ADM 3+1 treatment are presented, for its practical use as a calibration tool and as a test bed for numerical relativistic hydrodynamic codes.Comment: 4 pages; to appear as a Brief Report in Physical Review

    Inverse Ising inference using all the data

    Full text link
    We show that a method based on logistic regression, using all the data, solves the inverse Ising problem far better than mean-field calculations relying only on sample pairwise correlation functions, while still computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that interaction topologies can be recovered from few samples with good accuracy and that the use of l1l_1-regularization is beneficial in this process, pushing inference abilities further into low-temperature regimes.Comment: 5 pages, 2 figures. Accepted versio

    Gravitational dynamics in s+1+1 dimensions II. Hamiltonian theory

    Full text link
    We develop a Hamiltonian formalism of brane-world gravity, which singles out two preferred, mutually orthogonal directions. One is a unit twist-free field of spatial vectors with integral lines intersecting perpendicularly the brane. The other is a temporal vector field with respect to which we perform the Arnowitt-Deser-Misner decomposition of the Einstein-Hilbert Lagrangian. The gravitational variables arise from the projections of the spatial metric and their canonically conjugated momenta as tensorial, vectorial and scalar quantities defined on the family of hypersurfaces containing the brane. They represent the gravitons, a gravi-photon and a gravi-scalar, respectively. From the action we derive the canonical evolution equations and the constraints for these gravitational degrees of freedom both on the brane and outside it. By integrating across the brane, the dynamics also generates the tensorial and scalar projection of the Lanczos equation. The vectorial projection of the Lanczos equation arises in a similar way from the diffeomorphism constraint. Both the graviton and the gravi-scalar are continuous across the brane, however the momentum of the gravi-vector has a jump, related to the energy transport (heat flow) on the brane.Comment: 13 page
    corecore