701 research outputs found
Deconvoluting simulated metagenomes: The performance of hard- and softclustering algorithms applied to metagenomic chromosome conformation capture (3C)
© 2016 DeMaere and Darling. Background. Chromosome conformation capture, coupled with high throughputDNA sequencing in protocols like Hi-C and 3C-seq, has been proposed as a viable means of generating data to resolve the genomes of microorganisms living in naturally occuring environments. Metagenomic Hi-C and 3C-seq datasets have begun to emerge, but the feasibility of resolving genomes when closely related organisms (strain-level diversity) are present in the sample has not yet been systematically characterised. Methods. We developed a computational simulation pipeline for metagenomic 3C and Hi-C sequencing to evaluate the accuracy of genomic reconstructions at, above, and below an operationally defined species boundary. We simulated datasets and measured accuracy over a wide range of parameters. Five clustering algorithms were evaluated (2 hard, 3 soft) using an adaptation of the extended B-cubed validation measure. Results. When all genomes in a sample are below 95% sequence identity, all of the tested clustering algorithms performed well. When sequence data contains genomes above 95% identity (our operational definition of strain-level diversity), a naive soft- clustering extension of the Louvain method achieves the highest performance. Discussion. Previously, only hard-clustering algorithms have been applied to metage- nomic 3C and Hi-C data, yet none of these perform well when strain-level diversity exists in a metagenomic sample. Our simple extension of the Louvain method performed the best in these scenarios, however, accuracy remained well below the levels observed for samples without strain-level diversity. Strain resolution is also highly dependent on the amount of available 3C sequence data, suggesting that depth of sequencing must be carefully considered during experimental design. Finally, there appears to be great scope to improve the accuracy of strain resolution through further algorithm development
A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq
© 2016 Burke & Darling. Background: The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results: We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions: This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution
Bin3C: Exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes
© 2019 The Author(s). Most microbes cannot be easily cultured, and metagenomics provides a means to study them. Current techniques aim to resolve individual genomes from metagenomes, so-called metagenome-assembled genomes (MAGs). Leading approaches depend upon time series or transect studies, the efficacy of which is a function of community complexity, target abundance, and sequencing depth. We describe an unsupervised method that exploits the hierarchical nature of Hi-C interaction rates to resolve MAGs using a single time point. We validate the method and directly compare against a recently announced proprietary service, ProxiMeta. bin3C is an open-source pipeline and makes use of the Infomap clustering algorithm (https://github.com/cerebis/bin3C)
Online Bayesian phylogenetic inference: Theoretical foundations via sequential Monte Carlo
© 2017 The Author(s). Phylogenetics, the inference of evolutionary trees from molecular sequence data such as DNA, is an enterprise that yields valuable evolutionary understanding of many biological systems. Bayesian phylogenetic algorithms, which approximate a posterior distribution on trees, have become a popular if computationally expensive means of doing phylogenetics. Modern data collection technologies are quickly adding newsequences to already substantial databases.With all current techniques for Bayesian phylogenetics, computation must start anew each time a sequence becomes available, making it costly to maintain an up-to-date estimate of a phylogenetic posterior. These considerations highlight the need for an online Bayesian phylogenetic method which can update an existing posterior with new sequences. Here, we provide theoretical results on the consistency and stability of methods for online Bayesian phylogenetic inference based on Sequential Monte Carlo (SMC) and Markov chain Monte Carlo. We first show a consistency result, demonstrating that the method samples from the correct distribution in the limit of a large number of particles. Next, we derive the first reported set of bounds on how phylogenetic likelihood surfaces change when new sequences are added. These bounds enable us to characterize the theoretical performance of sampling algorithms by bounding the effective sample size (ESS) with a given number of particles from below.We show that the ESS is guaranteed to grow linearly as the number of particles in an SMC sampler grows. Surprisingly, this result holds even though the dimensions of the phylogenetic model grow with each new added sequence
Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices
Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a "primary concordance" tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes. © 2013
The impact of migratory flyways on the spread of avian influenza virus in North America
© 2017 The Author(s). Background: Wild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain. Results: To assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously. Conclusions: Based on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment
Protein domains as units of genetic transfer
Genomes evolve as modules. In prokaryotes (and some eukaryotes), genetic material can be transferred between species and integrated into the genome via homologous or illegitimate recombination. There is little reason to imagine that the units of transfer correspond to entire genes; however, such units have not been rigorously characterized. We examined fragmentary genetic transfers in single-copy gene families from 144 prokaryotic genomes and found that breakpoints are located significantly closer to the boundaries of genomic regions that encode annotated structural domains of proteins than expected by chance, particularly when recombining sequences are more divergent. This correlation results from recombination events themselves and not from differential nucleotide substitution. We report the first systematic study relating genetic recombination to structural features at the protein level
Draft genome sequence of Kocuria sp. strain UCD-OTCP (phylum Actinobacteria)
© 2013 Coil et al. Here, we present the draft genome of Kocuria sp. strain UCD-OTCP, a member of the phylum Actinobacteria, isolated from a restaurant chair cushion. The assembly contains 3,791,485 bp (G+C content of 73%) and is contained in 68 scaffolds
Draft genome sequence of Curtobacterium flaccumfaciens strain UCD-AKU (phylum Actinobacteria)
© 2013 Flanagan et al. Here we present the draft genome of an actinobacterium, Curtobacterium flaccumfaciens strain UCD-AKU, isolated from a residential carpet. The genome assembly contains 3,692,614 bp in 130 contigs. This is the first member of the Curtobacterium genus to be sequenced
Draft genome sequence of Microbacterium sp. strain UCD-TDU (phylum Actinobacteria)
© 2013 Bendiks et al. Here, we present the draft genome sequence of Microbacterium sp. strain UCD-TDU, a member of the phylum Actinobacteria. The assembly contains 3,746,321 bp (in 8 scaffolds). This strain was isolated from a residential toilet as part of an undergraduate student research project to sequence reference genomes of microbes from the built environment
- …