29 research outputs found
Bounds for stop-loss premiums of stochastic sums (with applications to life contingencies).
In this paper we present in a general setting lower and upper bounds for the stop-loss premium of a (stochastic) sum of dependent random variables. Therefore, use is made of the methodology of comonotonic variables and the convex ordering of risks, introduced by Kaas et al. (2000) and Dhaene et al. (2002a, 2002b), combined with actuarial conditioning. The lower bound approximates very accurate the real value of the stop-loss premium. However, the comonotonic upper bounds perform rather badly for some retentions. Therefore, we construct sharper upper bounds based upon the traditional comonotonic bounds. Making use of the ideas of Rogers and Shi (1995), the first upper bound is obtained as the comonotonic lower bound plus an error term. Next this bound is refined by making the error term dependent on the retention in the stop-loss premium. Further, we study the case that the stop-loss premium can be decomposed into two parts. One part which can be evaluated exactly and another part to which comonotonic bounds are applied. As an application we study the bounds for the stop-loss premium of a random variable representing the stochastically discounted value of a series of cash flows with a fixed and stochastic time horizon. The paper ends with numerical examples illustrating the presented approximations. We apply the proposed bounds for life annuities, using Makeham's law, when also the stochastic nature of interest rates is taken into account by means of a Brownian motion.Comonotonicity; Life annuity; Stochastic time horizon; Stop-loss premium;
Computation of covex bounds for present value functions with random payments
AbstractIn this contribution we study the distribution of the present value function of a series of random payments in a stochastic financial environment. Such distributions occur naturally in a wide range of applications within fields of insurance and finance. We obtain accurate approximations by developing upper and lower bounds in the convex-order sense for present value functions. Technically speaking, our methodology is an extension of the results of Dhaene et al. [Insur. Math. Econom. 31(1) (2002) 3–33, Insur. Math. Econom. 31(2) (2002) 133–161] to the case of scalar products of mutually independent random vectors
Bounds for stop-loss premiums of stochastic sums (with applications to life contingencies)
In this paper we present in a general setting lower and upper bounds for the stop-loss premium of a (stochastic) sum of dependent random variables. Therefore, use is made of the methodology of comonotonic variables and the convex ordering of risks, introduced by Kaas et al. (2000) and Dhaene et al. (2002a, 2002b), combined with actuarial conditioning. The lower bound approximates very accurate the real value of the stop-loss premium. However, the comonotonic upper bounds perform rather badly for some retentions. Therefore, we construct sharper upper bounds based upon the traditional comonotonic bounds. Making use of the ideas of Rogers and Shi (1995), the first upper bound is obtained as the comonotonic lower bound plus an error term. Next this bound is refined by making the error term dependent on the retention in the stop-loss premium. Further, we study the case that the stop-loss premium can be decomposed into two parts. One part which can be evaluated exactly and another part to which comonotonic bounds are applied. As an application we study the bounds for the stop-loss premium of a random variable representing the stochastically discounted value of a series of cash flows with a fixed and stochastic time horizon. The paper ends with numerical examples illustrating the presented approximations. We apply the proposed bounds for life annuities, using Makeham's law, when also the stochastic nature of interest rates is taken into account by means of a Brownian motion.status: publishe
Can a coherent risk measure be too subadditive?
We consider the problem of determining appropriate solvency capital requirements for an insurance company or a financial institution. We demonstrate that the subadditivity condition that is often imposed on solvency capital principles can lead to the undesirable situation where the shortfall risk increases by a merger. We propose to complement the subadditivity condition by a regulator’s condition. We find that for an explicitly specified confidence level, the Value-at-Risk satisfies the regulator’s condition and is the “most efficient” capital requirement in the sense that it minimizes som