28 research outputs found

    Correlation Tests of Ultrasonic Wave and Mechanical Parameters of Spot-Welded Joints

    No full text
    Resistance spot welding as the basic method of joining car body elements has been used in the automotive industry for many years. For these connections, it is required to obtain the appropriate diameter of the weld nugget, which results in a high strength and durability of the connection during vehicle operation. The article presents the methodology of testing spot-welded joints using both destructive methods: shearing test of the spot weld and the ultrasonic method. The main goals of the performed tests are (1) to determine the correlation between the mechanical strength of a joint, measured in kN, and the selected parameters of the ultrasonic longitudinal wave with a frequency of 20 MHz propagating in the area of the spot weld and (2) to build and verify the predictive models of the weld nugget quality. The correlation of these parameters allows assessing the strength of the connection with the use of a non-destructive test method. On the basis of the performed analyses, it was determined that there is a strongly positive correlation between the number of reverse echoes and the force necessary to destroy the spot weld (0.41) and the diameter of the weld nugget (0.50). A strong negative correlation was also obtained between the number of echoes and the strength (−0.69) and diameter of the weld nugget (−0.72)

    Przyczynek do wiedzy o synergii w układach tribologicznych

    No full text
    The article contains information about the knowledge of synergism in tribology systems. Two examples of analyses of synergism in tribology systems are presented in the article. In the first example, the interaction coefficient (synergy coefficient) was used to evaluate a set of engine and gear oils composed of special lubricating (surface-active) additives to improve the galling load – a measure of boundary layer strength, evaluated on a 4-ball apparatus. Using the interaction coefficient, a 12-element set of oils (compositions) was "separated" into three groups: synergism with additives (KS>1), sometimes strong, at KS=2, neutral interaction (KN=1), antagonism with additives (KA1), niekiedy silny, przy KS=2, współdziałanie neutralne (KN=1), antagonizm z dodatkami (KA<1). Analiza wyników badań przy pomocy współczynnika synergizmu pozwala również dobrać optymalne stężenie dodatku w oleju handlowym. W drugim z przypadków analizowano system trójczynnikowy, w którym cechą wynikową (niepożądaną) była miara zużycia mechaniczno-korozyjno-ściernego elementów metalowych. W specjalnie zaprojektowanych eksperymentach wyznaczono składowe zużycia całkowitego pochodzące od trzech czynników bazowych (mechanicznego, korozyjnego i środowiskowego) oraz od interakcji między nimi. Stwierdzono, że udział składowej sumarycznej odziaływań interakcyjnych mechaniczno-ścierno-korozyjnych wynosi od 40 do 50% zużycia całkowitego (przy 50% występuje silny synergizm KS=1)

    Adhesive Joints of Additively Manufactured Adherends: Ultrasonic Evaluation of Adhesion Strength

    No full text
    Adhesive joints are widely used in the construction of machines and motor vehicles. Manufacturers replace them with the welding and spot-welding methods due to the lack of damage to the material structure in the joint area. Moreover, it is aimed at reducing the weight of vehicles and producing elements with complex shapes. Therefore, additive manufacturing technology has been increasingly used in the production stage. This fact has not only changed the view on the possibilities of further development of the production technology itself, but it has also caused an intense interest among a greater number of companies in the advantages of structural optimization. There is a natural relationship between these two areas in the design and production, allowing for almost unlimited possibilities of designing new products. The main goal of the research described in this article was to determine the correlation between the strength of the adhesive joint of elements produced using additive technology and the parameters of the ultrasonic wave propagating in the area of the adhesive bond. The tests were carried out on samples made of AlSiMg0.6 material and a structural adhesive. Strength tests were performed to determine the shear force which damaged the joint. Furthermore, an ultrasonic echo technique enabling the determination of a nondestructive measure of the quality and strength of the joint was developed. The samples of the adhesive joints had a strength of about 18.75–28.95 MPa, which corresponded to an ultrasonic measure range of 4.6–7.8 dB. The determined regression relationship had a coefficient of determination at the level of 0.94. Additional ultrasonic tests of materials made with the additive technology confirmed its different acoustic properties in relation to aluminum produced with the standard casting or extrusion process. Designated dependence combining the mechanical strength and the decibel difference between the first and second impulses from the bottom of the joint may constitute the basis for the development of a nondestructive technique for testing the strength of adhesive joints

    Studies of Simultaneous Friction and Corrosive Processes in the Presence of Abrasive Particles

    No full text
    Providing high-quality machinery and equipment in technical terms is an activity aimed primarily at ensuring the high reliability of nodes. Reliability of machinery and equipment is mainly characterized by resistance to destructive processes. Mutual displacement of parts causes destructive friction phenomena, the intensity of which can be intensified by the interaction of specific technological environments. The article presents the results of research on ring-on-ring samples made of C45 steel in the non-heat-treated state, which were subjected to mechanical, corrosive, and abrasive wear and various combinations of them. The main purpose of the study was to determine the wear that results from the action of destructive friction and corrosive processes with the presence of abrasive material in the tribological node. The results supplement the knowledge of material wear under the simultaneous action of several destructive factors. Based on the study, it was noticed that the sum component of mechanical–abrasive–corrosive interactions is about 40–50% of the total wear. Mass loss resulting from simultaneous mechanical and abrasive interactions is equal about one-third of the total wear. In addition, it was observed that the effects of the interactions of friction (mechanical), corrosive and abrasive excitations are synergistic in nature, which lead to increases in the total wear of the tested samples made of steel. The results of the research are of practical importance and allow for wear-optimal selection of material in the friction node of modern machinery and equipment

    The analysis of spot welding joints of steel sheets with closed profile by ultrasonic method

    Get PDF
    Resistance spot welding is widely used in the fabrication of vehicle bodies and parts of their equipment. The article presents the methodology and the results of non-destructive ultrasonic testing of resistance spot welded joints of thin steel sheet with closed profile. Non-destructive test results were verified on the basis of welded joint area after destructive testing. The obtained results were used to develop an assessment technique for spot welded joints of closed profile with steel sheet, which could be used in factories employing such joints. In addition, the article makes comparison between the costs of the developed assessment technique and currently used destructive method

    Evaluation of Wear of Disc Brake Friction Linings and the Variability of the Friction Coefficient on the Basis of Vibroacoustic Signals

    No full text
    The article presents the results of friction and vibroacoustic tests of a railway disc brake carried out on a brake stand. The vibration signal generated by the friction linings provides information on their wear and offers evaluation of the braking process, i.e., changes in the average friction coefficient. The algorithm presents simple regression linear and non-linear models for the thickness of the friction linings and the average coefficient of friction based on the effective value of vibration acceleration. The vibration acceleration signals were analyzed in the amplitude and frequency domains. In both cases, satisfactory values of the dynamics of changes above 6 dB were obtained. In the case of spectral analysis using a mid-band filter, more accurate models of the friction lining thickness and the average coefficient of friction were obtained. However, the spectral analysis does not allow the estimation of the lining thickness and the friction coefficient at low braking speeds, i.e., 50 and 80 km/h. The analysis of amplitudes leads to the determination of models in the entire braking speed range from 50 to 200 km/h, despite the lower accuracy compared to the model, based on the spectral analysis. The vibroacoustic literature presents methods of diagnosis of the wear of various machine elements such as bearings or friction linings, based on amplitude or frequency analysis of vibrations. These signal analysis methods have their limitations with regard to their scope of use and the accuracy of diagnosis. There are no cases of simultaneous use of different methods of analysis. This article presents the simultaneous application of the amplitude and frequency methods in the analysis of vibroacoustic signals generated by brake linings. Moreover, algorithms for assessing the wear of friction linings and the average coefficient of friction were presented. The algorithm enables determination of the time at which the friction linings should be replaced with new ones. The final algorithm analyzes the vibration acceleration signals using both amplitude analysis for low braking speeds, as well as spectral analysis for medium and high braking speeds

    The Influence of Surface Preparation of the Steel during the Renovation of the Car Body on Its Corrosion Resistance

    No full text
    The article presents the influence of the applied method used for removing the varnish coat on the corrosion resistance of the car body sheet. The tests were carried out on samples prepared from factory-painted car body elements with pearlescent, metallized and acrylic varnish. Removal of the varnish coat was performed by sandpaper grinding, glass bead blasting, disc blaze rapid stripping, soda blasting and abrasive blasting with plastic granules. The average thickness of the factory-painted coating depending on the type of lacquer ranged from about 99 to 140 µm. On the other hand, after removing the varnish, the thickness of the protective zinc coating ranged from 2 to 12.7 µm. The highest values of the zinc coating were obtained for samples in which the varnish was removed by the method such as soda blasting and abrasive blasting with plastic granules. For these two methods of surface preparation, the damage to the zinc layer protecting the steel against corrosion is the smallest and the percentage of zinc in the surface layer ranges from 58% to 78%. The final stage of the research was to test the samples after removing the varnish coat in a two-hour exposure to the corrosive environment in a salt spray chamber. Samples with the surface prepared by grinding with sandpaper reached the level of surface rusting Ri 5, while in the case of soda blasting and the use of plastic granules, no corrosion centers were observed on the surface of the car body sheet

    Assessment of Selected Properties of Varnish Coating of Motor Vehicles

    No full text
    The technology and methods of testing the properties of varnish coatings used in motor vehicles are constantly and successfully developed. However, in the case of automotive varnish renovation coatings used in the repair of car bodies, the problem of fitting the quality of these coatings to the quality and current condition of the coating applied to undamaged vehicle components is not definitely solved. The main goal of the research was to determine the thickness and gloss distribution of the varnish coatings. The thickness and gloss of the varnish coating on the entire body of the vehicle were measured. Classical methods of assessing these properties were used. Defects in the renovation coating were also simulated, to show their negative impact on the varnish quality. The performed tests allowed for development of a procedure and algorithm for evaluation of the quality of the car’s renovation coating after the repair of the car body. The proposed procedure, expressed with the presented algorithm, allows to fit the obtained renovation coating to the quality and condition of the coating manufactured in factory on the car body in the range of its thickness up to 270 µm and gloss in the range of 5–90 GU. The developed procedure for the assessment of renovation coatings can be used in workshops that repair vehicle bodies. This will allow to improve the quality of renovation coatings and bring their properties, such as thickness or gloss, closer to those applied to the vehicle’s body at the factory

    Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber–Quartz–Metal Condition

    No full text
    Elements of belt conveyors, like other machine parts, are subject to wear processes. The conveyors transporting the spoil in the quartz sand mine are exposed to accelerated wear due to the effect of quartz on metal elements. Intensive wear of metal parts leads to downtime and the need to replace damage parts which generates additional costs. Therefore, it is important to perform surface treatment of metal elements, which will allow to extend the operation time of belt conveyors by reducing wear. The main objective of the article is to determine the impact of the pad welding process of the surface layer of metal elements on the abrasive wear of elements working in the metal–quartz sand–rubber conditions used in belt conveyors. In this research study, three different types of electrodes were used for pad welding the surface. The wear results obtained on the test stand were compared to wear of the basic element without surface treatment. The average wear value of the samples padded with electrode 3 was about 25% lower than the samples without surface treatment. The main mechanism of sample wear was the abrasion process due to the interaction between the steel surface and hard sand particles. The results presented in the article are important not only for belt conveyor elements but also for other machine parts where it is desirable to reduce abrasive wear

    Tribocorrosion and Abrasive Wear Test of 22MnCrB5 Hot-Formed Steel

    No full text
    The article presents the results of research on abrasive and tribocorrosion wear of boron steel. This type of steel is used in the automotive and agricultural industries for the production of tools working in soil. The main goal of the article is the evaluation of tribocorrosion and abrasive wear for hot-formed 22MnCrB5 steel and a comparison of the obtained results with test results for steel in a cold-formed state. The spinning bowl method to determine the wear of samples working in the abrasive mass was used. Furthermore, a stand developed based on the ball-on-plate system allows to determine the wear during the interaction of friction and corrosion. After the hot-forming process, 22MnCrB5 steel was three times more resistant for the abrasive wear than steel without this treatment. The average wear intensity for 22MnCrB5 untreated steel was 0.00046 g per km, while for 22MnCrB5 hot-formed steel it was 0.00014 g per km. The tribocorrosion tests show that the wear trace of hot-formed 22MnCrB5 steel was about 7.03 &micro;m, and for cold-formed 22MnCrB5 steel a 12.11 &micro;m trace was noticed. The hot-forming method allows to obtain the desired shape of the machine element and improves the anti-wear and anti-corrosion properties for boron steel
    corecore