7 research outputs found

    THE IMPROVEMENT OF BETULIN-3, 28-DIPHOSPHATE WATER-SOLUBILITY BY COMPLEXATION WITH AMINES–MEGLUMINE AND XYMEDON

    Get PDF
    Objective: To study betulin-3,28-diphosphate (BDP) water solubility improved by forming salt complexes with hydrophilic amino alcohols: meglumine as acidosis corrector and xymedon as the water-soluble antioxidant. Methods: We used 13C-, 31P-NMR, UV-spectroscopy and potentiometric titration to study the BDP-amine salt complexes formation and their solubility using HPLC-analysis. Results: The participation of xymedon in the proton transfer reaction with BDP in aqueous solutions was confirmed by the bathochromic shift of the carbonyl band from 299.1 nm to 304.2 nm, and by a hyperchromic effect (molar extinction ε from 8508 to 10 441 l·mol-1·cm-1) in UV-spectra. BDP complexation with meglumine was estimated by UV-spectral molar ratio method at 256 nm. Molar ratio of BDP-amine complexes (1:4) was proved by 31P-NMR. The chemical shift of phosphorus at C-3 atom of BDP (δ =-0.58 ppm) changed to+3.39 ppm, and at C-28 atom (δ =+0.28 ppm)–to+4.60 ppm. BDP solubility increased 100-600 fold according to HPLC-analysis. Conclusion: BDP interaction with amine in an aqueous solution was shown to proceed via a proton transfer due to relatively weak forces such as London forces, hydrogen bonding, electrostatic and hydrophobic interactions. In general, the formation of BDP salt complexes with amines in solution determines BDP water solubility. Water-soluble BDP enables to develop hydrophilic dosage forms

    BETULIN-3, 28-DIPHOSPHATE SALT COMPLEXES WITH AMINES AND THEIR ANTIOXIDANT ACTIVITY

    Get PDF
    Objective: Studies of composition, stability and antioxidant properties of the betulin-3, 28-diphosphate complexes with dopamine and trisamine.Methods: The betulin-3, 28-diphosphate (BDP) interaction with amines in a water-alcohol medium was studied by using spectral methods and potentiometric titration. Biochemical indexes such as catalase, superoxide dismutase (SOD), lactate dehydrogenase (LDH) activities and malondialdehyde (MDA) level were estimated in experiments on rats.Results: BDP was synthesized using betulin by POCl3 treatment in the presence of pyridine in dioxane. The complexation of BDP with amines was confirmed by the 31P-NMR and FTIR-spectral data. The stoichiometry of BDP-dopamine complexes was equal to 2:1 and 4:1 and its complexes with trisamine were produced in the ratio 1:1 in a water-alcohol medium. The conditional stability constant К′st of the BDP-trisamine complex is 1130±55 mol∙l-1. BDP-Tris complex improved SOD activity up to 30% and up to 105% in the presence of cytostatic-hydrazine sulfate. The MDA level in erythrocytes decreased up to 57% and in combination with cytostatics (5-fluorouracil and hydrazine sulfate)-up to 11-14%. The catalase activity increased by 44-94% and MDA level in erythrocytes decreased by 22-53% under the action BDP-DA complexes that depends on the dose.Conclusion: The BDP forms stable complexes with trisamine and dopamine that make it possible to use this compound as a component of drug delivery system for high toxicity cytostatics and for readily oxidized catecholamines. It has been shown that both its complexes with amines and the combination with cytostatics enhanced antioxidant activity in an experiment in vitro

    Betulin-3,28-diphosphate as a Component of Combination Cytostatic Drugs for the Treatment of Ehrlich Ascites Carcinoma In Vitro and In Vivo Experiments

    No full text
    The activity of betulin-3,28-diphosphate (BDP) in combination with the cytostatics such as 5-fluorouracil (5-FU) and hydrazine sulfate (HS) was demonstrated by using the transplanted Ehrlich ascites carcinoma (EAC) in mice. The dose-dependent effect of combination drugs BDP + HS and BDP + 5-FU was revealed by in vitro experiments on rats. The synergetic effect of HS and BDP on oxidative stress and energy metabolism was established. The malonic dialdehyde (MDA) level both in plasma and erythrocytes decreased by 87 ± 2%, and the superoxide dismutase (SOD) activity increased by 105 ± 7% in comparison with the control. The combination of BDP + HS promoted the increase of lactate dehydrogenase (LDH) activity in the reverse reaction by 195 ± 21% compared to the control. The combination drug of 5-FU with BDP caused the synergetic decrease of the lipid peroxidation (LPO) intensity estimated by the MDA level decrease up to 14 ± 4% compared to pure compounds. Betulin-3,28-diphosphate in combination with cytostatics for EAC treatment improved the animal health status, as well as decreased the cytostatics dose that can be used in palliative therapy

    The Effect of Betulin Diphosphate in Wound Dressings of Bacterial Cellulose-ZnO NPs on Platelet Aggregation and the Activity of Oxidoreductases Regulated by NAD(P)+/NAD(P)H-Balance in Burns on Rats

    No full text
    The inhibition of platelet aggregation, and the activity of oxidoreductases and microhemocirculation in a burn wound on the treatment of burns with wound dressings based on bacterial nanocellulose (BC)-zinc oxide nanoparticles (ZnO NPs)-betulin diphosphate (BDP) were studied. The control of the treatment by BC-ZnO NPs-BDP on burned rats by the noninvasive DLF method showed an increase in perfusion and the respiratory component in wavelet spectra, characterizing an improvement in oxygen saturation in the wound. The study on the volunteers’ blood found the inhibition of ADP-induced platelet aggregation by 30–90%. Disaggregation depends on the dose under the action of the ionized form of BDP and ZnO NPs-BDP in a phosphate buffer; it was reversible and had two waves. It was shown on rats that the specific activity of LDHreverse and LDHdirect (control-intact animals) on day 21 of treatment increased by 11–38% and 23%, respectively. The LDHreverse/LDHdirect ratio increased at BC-ZnO NPs-BDP treatment, which characterizes efficient NAD+ regeneration. AlDH activity increased significantly in the first 10 days by 70–170%, reflecting the effectiveness of the enzyme and NAD+ in utilizing toxic aldehydes at this stage of burn disease. The activities of GR and G6PDH using NADP(H) were increased with BC-ZnO NPs-BDP treatment

    Zinc Oxide Nanoparticles Protected with Terpenoids as a Substance in Redox Imbalance Normalization in Burns

    No full text
    Preliminary protection of zinc oxide nanoparticles (ZnO NPs) with terpenoids such as betulin, its derivatives, and essential oils components has been proposed to produce gel-like oleophilic and hydrophilic formulations. We studied the properties of gel-like dispersions of ZnO NPs with immobilized terpenoids and their effects on the activity of LDH, GR, G6PDH, restoration of redox balance of co-enzyme pairs NAD+/NADH and NADP+/NADPH, as well as the activity of SOD, catalase, AlDH in erythrocytes in the treatment of burns in rats. Hysteresis loops on the rheograms of studied dispersions characterize their thixotropic properties. ZnO NPs with betulin diphosphate in the water–ethanol medium lead to a 20-fold increase in the hydrodynamic radius at pH 7.3 compared to the initial ZnO NPs, and facilitate the formation of Zn2+ ions and their penetration into the viable epidermis, unlike oleophilic dispersions. All dispersions reduce the healing time by one and a half times compared with the untreated control group, increase the activity of LDH, GR, G6PDH, SOD, catalase, AlDH, and contribute to the normalization of coenzyme balance. Normalization of the redox balance and wound state was more effective using hydrophilic dispersions due to Zn2 + penetration

    Antioxidant Activity of New Copolymer Conjugates of Methoxyoligo(Ethylene Glycol)Methacrylate and Betulin Methacrylate with Cerium Oxide Nanoparticles <i>In Vitro</i>

    No full text
    The synthesis of two new copolymer conjugates of methoxyoligo(ethylene glycol)methacrylate MPEGMA and betulin methacrylate BM was developed via RAFT polymerization. The molar content of BM units was equal to 9–10 and 13–16 mol%, respectively (HPLC, 1H and 13C NMR); molar weights were equal to 75000–115000. CeO2 NPs as a component of the hybrid material were synthesized for the preparation of the composition with copolymer conjugates of MPEGMA and BM. We showed a significant increase in G6PDH and GR activities by 21–51% and 9–132%, respectively, which was due to the increase in NADPH concentration under the action of copolymers in vitro. The actions of copolymers and CeO2 NPs combination were stronger than those of the individual components: the SOD activity increased by more than 30%, the catalase activity increased dose-dependently from 13 to 45%, and the GR activity increased to 49%. The maximum increase in enzyme activity was observed for the G6PDH from 54% to 151%. The MDA level dose-dependently increased by 3–15% under the action of copolymers compared with the control, and dose-dependently decreased by 3–12% in samples containing CeO2 NPs only. CeO2 NP–copolymer compositions can be used for the design of new biomimetic medical products with controlled antioxidant properties
    corecore