3 research outputs found
Determination of the Single-Exciton Two-Photon Absorption Cross Sections of Semiconductor Nanocrystals through the Measurement of Saturation of Their Two-Photon-Excited Photoluminescence
International audienc
Effect of spectral overlap and separation distance on exciton and biexciton quantum yields and radiative and nonradiative recombination rates in quantum dots near plasmon nanoparticles
Efficient biexciton (BX) photoluminescence (PL) from quantum dots (QDs) paves the way to the generation of entangled photons and related applications. However, the quantum yield (QY) of BX PL is much lower than that for single excitons (EX) due to efficient Auger-like recombination. In the vicinity of plasmon nanoparticles, the recombination rates of EX and BX may be affected by the Purcell effect, fluorescence quenching, and the excitation rate enhancement. Here, the effect of the plasmon resonance spectral position on the EX and BX PL is experimentally studied in two cases: when the plasmon band overlaps with the excitation wavelength and when it coincides with the QDs PL band. In the first case, the EX and BX excitation efficiencies are significantly increased but the EX QY reduced. As a result, the BX-to-EX QY ratio is higher than 1 at plasmonâexciton systems separations shorter than 40 nm. In the second case, the radiative recombination rates are enhanced by several orders of magnitude, which led to an increase in BX QY over distances of up to 90 nm. Finally, these two effects are obtained in the same hybrid structure, with the resultant increase in both excitation efficiency and QY of BX PL.They also acknowledge the ïŹnancial support from theMinistry of Science and Higher Education of the Russian Federation (Grant Number: 14.Y26.31.0011) . Y.R. acknowledges the support from the Basque Government (IT1164â19
Effect of Spectral Overlap and Separation Distance on Exciton and Biexciton Quantum Yields and Radiative and Nonradiative Recombination Rates in Quantum Dots Near Plasmon Nanoparticles
Efficient biexciton (BX) photoluminescence (PL) from quantum dots (QDs) paves the way to the generation of entangled photons and related applications. However, the quantum yield (QY) of BX PL is much lower than that for single excitons (EX) due to efficient Auger-like recombination. In the vicinity of plasmon nanoparticles, the recombination rates of EX and BX may be affected by the Purcell effect, fluorescence quenching, and the excitation rate enhancement. Here, the effect of the plasmon resonance spectral position on the EX and BX PL is experimentally studied in two cases: when the plasmon band overlaps with the excitation wavelength and when it coincides with the QDs PL band. In the first case, the EX and BX excitation efficiencies are significantly increased but the EX QY reduced. As a result, the BX-to-EX QY ratio is higher than 1 at plasmonâexciton systems separations shorter than 40 nm. In the second case, the radiative recombination rates are enhanced by several orders of magnitude, which led to an increase in BX QY over distances of up to 90 nm. Finally, these two effects are obtained in the same hybrid structure, with the resultant increase in both excitation efficiency and QY of BX PL.They also acknowledge the ïŹnancial support from theMinistry of Science and Higher Education of the Russian Federation (Grant Number: 14.Y26.31.0011) . Y.R. acknowledges the support from the Basque Government (IT1164â19