2 research outputs found

    Optical hydrogen sensing with high-Q guided-mode resonance of Al2O3/WO3/Pd nanostructure

    No full text
    Abstract Nanostructure based on a dielectric grating (Al2O3), gasochromic oxide (WO3) and catalyst (Pd) is proposed as a hydrogen sensor working at the room temperature. In the fabricated structure, the Pd catalyst film was as thin as 1 nm that allowed a significant decrease in the optical absorption. A high-Q guided-mode resonance was observed in a transmission spectrum at normal incidence and was utilized for hydrogen detection. The spectra were measured at 0–0.12% of hydrogen in a synthetic air (≈ 80% N2{\text{N}}_{2} N 2 and 20% O2{\text{O}}_{2} O 2 ). The detection limit below 100 ppm of hydrogen was demonstrated. Hydrogen was detected in the presence of oxygen, which provides the sensor recovery but suppresses the sensor response. Sensor response was treated by the principal component analysis (PCA), which effectively performs noise averaging. Influence of temperature and humidity was measured and processed by PCA, and elimination of the humidity and temperature effects was performed. Square root dependence of the sensor response on the hydrogen concentration (Sievert’s law) was observed. Sensor calibration curve was built, and the sensor resolution of 40 ppm was found. Long term stability of the sensor was investigated. Particularly, it was shown that the sensor retains its functionality after 6 months and dozens of acts of response to gas

    Low-Damage Reactive Ion Etching of Nanoplasmonic Waveguides with Ultrathin Noble Metal Films

    No full text
    Nanoplasmonic waveguides utilizing surface plasmon polaritons (SPPs) propagation have been investigated for more than 15 years and are now well understood. Many researchers make their efforts to find the best ways of using light and overcoming the speed limit of integrated circuits by means of SPPs. Here, we introduce the simulation results and fabrication technology of dielectric-metal-dielectric long-range nanoplasmonic waveguides, which consists of a multilayer stack based on ultrathin noble metals in between alumina thin films. Various waveguide topologies are simulated to optimize all the geometric and multilayer stack parameters. We demonstrate the calculated propagation length of Lprop = 0.27 mm at the 785 nm wavelength for the Al2O3/Ag/Al2O3 waveguides. In addition, we numerically show the possibility to eliminate signal cross-talks (less than 0.01%) between two crossed waveguides. One of the key technology issues of such waveguides’ nanofabrication is a dry, low-damage-etching of a multilayer stack with extremely sensitive ultrathin metals. In this paper, we propose the fabrication process flow, which provides both dry etching of Al2O3/Au(Ag)/Al2O3 waveguides nanostructures with high aspect ratios and non-damage ultrathin metal films patterning. We believe that the proposed design and fabrication process flow provides new opportunities in next-generation photonic interconnects, plasmonic nanocircuitry, quantum optics and biosensors
    corecore