50 research outputs found
Modelling the influence of oil content on optical properties of seawater in the Baltic Sea
The accuracy and correct interpretation of optical parameters of seawater depend on the complete information osn the interactions between seawater components and the light field. Among components influencing the radiative transfer, the droplets of oil can cause overor underestimation of modelled and measured optical quantities, especially in closed seas and coastal zones. Oil content in the Baltic Sea varies from several ppb in the open sea to several ppm in estuaries or ship routes. Oil droplets become additional absorbents and attenuators in seawater causing changes in apparent optical properties. These changes can potentially enable remote optical detection of oil-in-water emulsion in visible bands. To demonstrate potential possibilities of such optical remote sensing, a study of inherent optical properties of two types of crude oil emulsion was conducted, i.e. high absorptive and strongly scattering Romashkino, and low absorptive and weakly scattering Petrobaltic. First, the calculations of spectral absorption and scattering coefficients as well as scattering phase functions for oil emulsions were performed on the basis of Lorentz-Mie theory for two different oil droplets size distributions corresponding to a fresh and 14-days aged emulsions. Next, radiative transfer theory was applied to evaluate the contribution of oil emulsion to remote sensing reflectance R_rs(λ). Presented system for radiative transfer simulation is based on Monte Carlo code and it involves optical tracing of virtual photons. The model was validated by comparison of R_rs(λ) simulated for natural seawater to R_rs(λ) from in situ measurements in Baltic Sea. The deviation did not exceed 10% for central visible wavelengths and stayed within 5% for short and long wavelengths. The light Petrobaltic crude oil in concentration of 1 ppm causes typically a 10-30% increase of Rrs while the heavy Romashkino reduces Rrs for 30-50%
Light penetration in seawater polluted by dispersed oil: results of radiative transfer modelling
The downwelling light in seawater is shaped by natural seawater constituents as well as by some external substances which can occur locally and temporally. In this study we focused on dispersed oil droplets which can be found in seawater after an oil spill or in the consequence of intensive shipping, oil extraction and transportation. We applied our modified radiative transfer model based on Monte Carlo code to evaluate the magnitude of potential influence of dispersed oil droplets on the downwelling irradiance and the depth of the euphotic zone. Our model was validated on the basis of in situ measurements for natural (unpolluted) seawater in the Southern Baltic Sea, resulting in less than 5% uncertainty. The optical properties of dispersed Petrobaltic crude oil were calculated on the basis of Mie theory and involved into radiative transfer model. We found that the changes in downwelling light caused by dispersed oil depend on several factors such as oil droplet concentration, size distribution, and the penetration depth (i.e. vertical range of oil droplets occurrence below sea surface). Petrobaltic oil droplets of submicron sizes and penetration depth of 5 m showed a potentially detectable reduction in the depth of the euphotic zone of 5.5% at the concentration of only 10 ppb. Micrometer-sized droplets needed 10 times higher concentration to give a similar effect. Our radiative transfer model provided data to analyse and discuss the influence of each factor separately. This study contributes to the understanding of the change in visible light penetration in seawater affected by dispersed oil
An Aeroacoustic Investigation of a Tiltwing eVTOL Concept Aircraft
With the advancement in electric battery design, aircraft designers and manufacturers are no longer constrained to established configurations. Developments in Vertical Take-off and Landing (VTOL) aircraft have also been seen in recent times through the design of modern tiltrotor aircraft such as the AW609 and the V-280 Valor. The combination of these developments allowed engineers to propose designs which utilise the vertical take-off and landing capabilities of a tiltrotor aircraft with electrically driven propulsion systems, deemed eVTOL (Electrically driven Vertical Take-off and Landing). This investigation aims to develop an understanding of the aeroacoustic emissions associated with an eVTOL aircraft, due to acoustics being one of the key components in future certification. The study will consist of an investigation into the baseline design, followed by an optimisation study aiming to reduce the amount of noise generated
Ocean Virtual Laboratory: A new way to explore multi-sensor synergy demonstrated over the Agulhas region
Ocean Virtual Laboratory is an ESA-funded project to prototype the concept of a single point of access for all satellite remote-sensing data with ancillary model output and in situ measurements for a given region. The idea is to provide easy access for the non-specialist to both data and state-of-the-art processing techniques and enable their easy analysis and display. The project, led by OceanDataLab, is being trialled in the region of the Agulhas Current, as it contains signals of strong contrast (due to very energetic upper ocean dynamics) and special SAR data acquisitions have been recorded there. The project also encourages the take up of Earth Observation data by developing training material to help those not in large scientific or governmental organizations make the best use of what data are available. The website for access is: http://ovl-project.oceandatalab.com
Field testing, validation and optimization report
The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77).
As the overall strategy, the 11 work packages (WPs) of the work plan were grouped into 3 key phases: (1) RD basis for cost-effective sensor development , (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases, partners involved in WP1 and WP2 have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors were created and integrated into different identified platforms. During the third phase of field testing (WP9), partners have deployed precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms have allowed the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations.
In task 9.1 all stakeholders identified in WP2 have been contacted in order to agree upon a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, have been closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information have provided the basis for designing and coordinating field testing activities.
Subsequently, the available new sensors have been tested since August 2015 till mid-October of the current year (2016) as part of task 9.2, following the indications defined in D9.1, such as the intercomparison of the new sensors with commercial ones, when possible.
The availability of new sensors was quite different in time starting with the first tests in September and October 2015 on noise, nutrient and heavy metals sensors and closing with pCO2 in late September 2016.
Sensors are technically fully described in the deliverables of WPs 3 to 8 and are here just mentioned where necessary. For further details, please consider those reports.
Objectives and rationale
The protocols prepared in D9.1 have been verified during the field testing activities of the innovative sensors on platforms. These can be summarized into 3 categories: (1) Research vessels (regular cruises); (2) Fixed platforms; (3) Ocean racing yachts. An exhaustive analysis of the different data obtained during field testing activities has been carried on in order to set possible optimization actions for prototypes design and performances. The data from each platform have been analyzed to verify limits and optimal installations or possible improvements. Finally a set of possible optimization actions has been defined. Data and observations collected during the course of field testing have been used to iteratively optimize the design and performance of the precompetitive prototypes
Protocols for the field testing
The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77).
In an overall strategy of the work plan, work packages (11) can be grouped into 3 key phases: (1) RD basis for cost-effective sensor development, (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases WP1 and WP2 partners have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors are created and integrated into different identified platforms. During the third phase 3, characterized by WP9, partners will deploy precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms will allow the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations.
In task 9.1 all stakeholders identified in WP2, and other relevant agents, have been contacted in order to close a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, are closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information will provide the basis for designing and coordinating field testing activities.
Type and characteristics of the system (vessel or mooring, surface or deep, open sea or coastal area, duration, etc.), used for the field testing activities, are planned comprising the indicators included in the above-mentioned descriptors, taking into account that they must of interest for eutrophication, concentration of contaminants, marine litter and underwater noise.
In order to obtain the necessary information, two tables were realized starting from the information acquired for D2.2 delivered in June 2014. One table was created for sensor developers and one for those partners that will test the sensors at sea.
The six developers in COMMON SENSE have provided information on the seven sensors: CEFAS and IOPAN for underwater noise; IDRONAUT and LEITAT for microplastics; CSIC for an innovative piro and piezo resistive polymeric temperature and pressure and for heavy metal; DCU for the eutrophication sensor.
This information is anyway incomplete because in most cases the novel sensors are still far to be ready and will be developed over the course of COMMON SENSE. So the sensors cannot be clearly designed yet and, consequently, technical characteristics cannot still be perfectly defined. This produces some lag in the acquired information and, consequently, in the planning of their testing on specific platforms that will be solved in the near future.
In the table for Testers, partners have provided information on fifteen available platforms. Specific answers have been given on number and type of sensors on each platforms, their availability and technical characteristics, compatibility issues and, very important when new sensors are tested, comparative measurements to be implemented to verify them.
Finally IOPAN has described two more platforms, a motorboat not listed in the DoW, but already introduced in D2.2, and their oceanographic buoy in the Gdansk Bay that was previously unavailable. The same availability now is present for the OBSEA Underwater observatory from CSIC, while their Aqualog undulating mooring is still not ready for use.
In the following months, new information on sensors and platforms will be provided and the planning of testing activities will improve. Further updates of this report will be therefore necessary in order to individuate the most suitable platforms to test each kind of sensor.
Objectives and rationale
The objective of deliverable 9.1 is the definition of field testing procedures (WP2), the study of deployment specificities during sensor development work packages (from WP4 to WP8) and the preparation of protocols. This with the participation of all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment
An integrated approach to coastal and biological observations
Maritime economy, ecosystem-based management and climate change adaptation and mitigation raise emerging needs on coastal ocean and biological observations. Integrated ocean observing aims at optimizing sampling strategies and cost-efficiency, sharing data and best practices, and maximizing the value of the observations for multiple purposes. Recently developed cost-effective, near real time technology such as gliders, radars, ferrybox, and shallow water Argo floats, should be used operationally to generate operational coastal sea observations and analysis. Furthermore, value of disparate coastal ocean observations can be unlocked with multi-dimensional integration on fitness-for-the-purpose, parameter and instrumental. Integration of operational monitoring with offline monitoring programs, such as those for research, ecosystem-based management and commercial purposes, is necessary to fill the gaps. Such integration should lead to a system of networks which can deliver data for all kinds of purposes. Detailed integration activities are identified which should enhance the coastal ocean and biological observing capacity. Ultimately a program is required which integrates physical, biogeochemical and biological observation of the ocean, from coastal to deep-sea environments, bringing together global, regional, and local observation efforts