55 research outputs found
Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis
The biosynthesis of anthocyanins has been shown to be influenced by light quality. However, the molecular mechanisms underlying the light-mediated regulation of fruit anthocyanin biosynthesis are not well understood. In this study, we analysed the effects of supplemental red and blue light on the anthocyanin biosynthesis in non-climacteric bilberry (Vaccinium myrtillus L.). After 6 days of continuous irradiation during ripening, both red and blue light elevated concentration of anthocyanins, up to 12- and 4-folds, respectively, compared to the control. Transcriptomic analysis of ripening berries showed that both light treatments up-regulated all the major anthocyanin structural genes, the key regulatory MYB transcription factors and abscisic acid (ABA) biosynthetic genes. However, higher induction of specific genes of anthocyanin and delphinidin biosynthesis alongside ABA signal perception and metabolism were found in red light. The difference in red and blue light signalling was found in 9-cis-epoxycarotenoid dioxygenase (NCED), ABA receptor pyrabactin resistance-like (PYL) and catabolic ABA-8'hydroxylase gene expression. Red light also up-regulated expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) domain transporters, which may indicate involvement of these proteins in vesicular trafficking of anthocyanins during fruit ripening. Our results suggest differential signal transduction and transport mechanisms between red and blue light in ABA-regulated anthocyanin and delphinidin biosynthesis during bilberry fruit ripening.Peer reviewe
The Coordinated Action of MYB Activators and Repressors Controls Proanthocyanidin and Anthocyanin Biosynthesis in Vaccinium
Vaccinium berries are regarded as “superfoods” owing to their high concentrations of anthocyanins, flavonoid metabolites that provide pigmentation and positively affect human health. Anthocyanin localization differs between the fruit of cultivated highbush blueberry (V. corymbosum) and wild bilberry (V. myrtillus), with the latter having deep red flesh coloration. Analysis of comparative transcriptomics across a developmental series of blueberry and bilberry fruit skin and flesh identified candidate anthocyanin regulators responsible for this distinction. This included multiple activator and repressor transcription factors (TFs) that correlated strongly with anthocyanin production and had minimal expression in blueberry (non-pigmented) flesh. R2R3 MYB TFs appeared key to the presence and absence of anthocyanin-based pigmentation; MYBA1 and MYBPA1.1 co-activated the pathway while MYBC2.1 repressed it. Transient overexpression of MYBA1 in Nicotiana benthamiana strongly induced anthocyanins, but this was substantially reduced when co-infiltrated with MYBC2.1. Co-infiltration of MYBC2.1 with MYBA1 also reduced activation of DFR and UFGT, key anthocyanin biosynthesis genes, in promoter activation studies. We demonstrated that these TFs operate within a regulatory hierarchy where MYBA1 activated the promoters of MYBC2.1 and bHLH2. Stable overexpression of VcMYBA1 in blueberry elevated anthocyanin content in transgenic plants, indicating that MYBA1 is sufficient to upregulate the TF module and activate the pathway. Our findings identify TF activators and repressors that are hierarchically regulated by SG6 MYBA1, and fine-tune anthocyanin production in Vaccinium. The lack of this TF module in blueberry flesh results in an absence of anthocyanins.publishedVersio
Using exomarkers to assess mitochondrial reactive species in vivo
Background:
The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging.
Scope of review:
One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules.
Major conclusions and general significance:
Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Abbreviations:
EPR, electron paramagnetic resonance; GFP, green fluorescent protein; 4-HNE, 4-hydroxynonenal; MitoB, 3-(dihydroxyboronyl)benzyltriphenylphosphonium bromide; MitoP, (3-hydroxybenzyl)triphenylphosphonium bromide; ROS, reactive oxygen species; SOD, superoxide dismutase; TPMP, methyltriphenylphosphonium; TPP, triphenylphosphonium catio
Apple B-box factors regulate light-responsive anthocyanin biosynthesis genes
Environmentally-responsive genes can affect fruit red colour via the activation of MYB transcription factors. The apple B-box (BBX) gene, BBX33/CONSTANS-like 11 (COL11) has been reported to influence apple red-skin colour in a light- and temperature-dependent manner. To further understand the role of apple BBX genes, other members of the BBX family were examined for effects on colour regulation. Expression of 23 BBX genes in apple skin was analysed during fruit development. We investigated the diurnal rhythm of expression of the BBX genes, the anthocyanin biosynthetic genes and a MYB activator, MYB10. Transactivation assays on the MYB10 promoter, showed that BBX proteins 1, 17, 15, 35, 51, and 54 were able to directly function as activators. Using truncated versions of the MYB10 promoter, a key region was identified for activation by BBX1. BBX1 enhanced the activation of MYB10 and MdbHLH3 on the promoter of the anthocyanin biosynthetic gene DFR. In transformed apple lines, over-expression of BBX1 reduced internal ethylene content and altered both cyanidin concentration and associated gene expression. We propose that, along with environmental signals, the control of MYB10 expression by BBXs in 'Royal Gala' fruit involves the integration of the expression of multiple BBXs to regulate fruit colour.Peer reviewe
MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production
The Vaccinium genus in the family Ericaceae comprises many species, including the fruit-bearing blueberry, bilberry, cranberry, huckleberry, and lingonberry. Commercially, the most important are the blueberries (Vaccinium section Cyanococcus), such as Vaccinium corymbosum (northern highbush blueberry), Vaccinium virgatum (rabbiteye blueberry), and Vaccinium angustifolium (lowbush blueberry). The rising popularity of blueberries can partly be attributed to their “superfood” status, with an increasing body of evidence around human health benefits resulting from the fruit metabolites, particularly products of the phenylpropanoid pathway such as anthocyanins. Activation of anthocyanin production by R2R3-MYB transcription factors (TFs) has been characterized in many species, but despite recent studies on blueberry, cranberry, and bilberry, no MYB anthocyanin regulators have been reported for Vaccinium. Indeed, there has been conjecture that at least in bilberry, MYB TFs divergent to the usual type are involved. We report identification of MYBA from blueberry, and show through sequence analysis and functional studies that it is homologous to known anthocyanin-promoting R2R3-MYBs of subgroup 6 of the MYB superfamily. In transient assays, MYBA complemented an anthocyanin MYB mutant of Antirrhinum majus and, together with a heterologous bHLH anthocyanin regulator, activated anthocyanin production in Nicotiana benthamiana. Furthermore anthocyanin accumulation and anthocyanin structural gene expression (assayed by qPCR and RNA-seq analyses) correlated with MYBA expression, and MYBA was able to transactivate the DFR promoter from blueberry and other species. The RNA-seq data also revealed a range of other candidate genes involved in the regulation of anthocyanin production in blueberry fruit. The identification of MYBA will help to resolve the regulatory mechanism for anthocyanin pigmentation in the Vaccinium genus. The sequence information should also prove useful in developing tools for the accelerated breeding of new Vaccinium cultivars
De novo transcriptome assembly and functional analysis reveal a dihydrochalcone 3-hydroxylase(DHC3H) of wild Malus species that produces sieboldin in vivo
Sieboldin is a specialised secondary metabolite of the group of dihydrochalcones (DHC), found in high concentrations only in some wild Malus species, closely related to the domesticated apple (Malus Ă— domestica L.). To date, the first committed step towards the biosynthesis of sieboldin remains unknown. In this study, we combined transcriptomic analysis and a de novo transcriptome assembly to identify two putative 3-hydroxylases in two wild Malus species (Malus toringo (K. Koch) Carriere syn. sieboldii Rehder, Malus micromalus Makino) whose DHC profile is dominated by sieboldin. We assessed the in vivo activity of putative candidates to produce 3-hydroxyphloretin and sieboldin by de novo production in Saccharomyces cerevisiae. We found that CYP98A proteins of wild Malus accessions (CYP98A195, M. toringo and CYP98A196, M. micromalus) were able to produce 3-hydroxyphloretin, ultimately leading to sieboldin accumulation by co-expression with PGT2. CYP98A197-198 genes of M. Ă— domestica, however, were unable to hydroxylate phloretin in vivo. CYP98A195-196 proteins exerting 3-hydroxylase activity co-localised with an endoplasmic reticulum marker. CYP98A protein model from wild accessions showed mutations in key residues close to the ligand pocket predicted using phloretin for protein docking modelling. These mutations are located within known substrate recognition sites of cytochrome P450s, which could explain the acceptance of phloretin in CYP98A protein of wild accessions. Screening a Malus germplasm collection by HRM marker analysis for CYP98A genes identified three clusters that correspond to the alleles of domesticated and wild species. Moreover, CYP98A isoforms identified in M. toringo and M. micromalus correlate with the accumulation of sieboldin in other wild and hybrid Malus genotypes. Taken together, we provide the first evidence of an enzyme producing sieboldin in vivo that could be involved in the key hydroxylation step towards the synthesis of sieboldin in Malus species
A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury.
Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted--ischemia--and then restored--reperfusion--leading to a burst of reactive oxygen species (ROS) from mitochondria. It has been tacitly assumed that ROS production during IR is a non-specific consequence of oxygen interacting with dysfunctional mitochondria upon reperfusion. Recently, this view has changed, suggesting that ROS production during IR occurs by a defined mechanism. Here we survey the metabolic factors underlying IR injury and propose a unifying mechanism for its causes that makes sense of the huge amount of disparate data in this area and provides testable hypotheses and new directions for therapies.Work in our laboratories is supported by the Medical Research Council (UK) and the British Heart Foundation. E.T.C. is supported by a Human Frontiers Science Program fellowship.This is the author accepted manuscript. The final version is available from Cell Press via http://dx.doi.org/10.1016/j.cmet.2015.12.00
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
- …