123 research outputs found
Architecture in the Age of Spatial Dissolution
Jean Baudrillard has observed that our countryside appears to be an immense deserted body whose expanse and dimensions seem arbitrary : both time and space collapse under the ecstasy of communication
Confidences of a Spec-Writer
This article contains the diary letters qua letters left me by a man whom, according to the expression he often used himself, we called the Spec-writer, or with a certain trepidation, the Specter. Whether these letters need any introductory remarks may be open to question
Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics
Using periodic boundary conditions and a constant applied field, we have
simulated current flow through an 8.125 Angstrom internal diameter, rigid,
atomistic channel with polar walls in a rigid membrane using explicit ions and
SPC/E water. Channel and bath currents were computed from ten 10-ns
trajectories for each of 10 different conditions of concentration and applied
voltage. An electric field was applied uniformly throughout the system to all
mobile atoms. On average, the resultant net electric field falls primarily
across the membrane channel, as expected for two conductive baths separated by
a membrane capacitance. The channel is rarely occupied by more than one ion.
Current-voltage relations are concentration-dependent and superlinear at high
concentrations.Comment: Accepted for publication in Biophysical Journa
Prediction and Topological Models in Neuroscience
In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions can and do guide interventions in science, both inside and outside of neuroscience. Topological models allow researchers to predict many phenomena, including diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these predictions also offer strategies for useful interventions. Topology-based predictions play this role regardless of whether they do or can receive a mechanistic interpretation. We conclude by making a case for philosophers to focus on prediction in neuroscience in addition to explanation alone
Arginine in Membranes: The Connection Between Molecular Dynamics Simulations and Translocon-Mediated Insertion Experiments
Several laboratories have carried out molecular dynamics (MD) simulations of arginine interactions with lipid bilayers and found that the energetic cost of placing arginine in lipid bilayers is an order of magnitude greater than observed in molecular biology experiments in which Arg-containing transmembrane helices are inserted across the endoplasmic reticulum membrane by the Sec61 translocon. We attempt here to reconcile the results of the two approaches. We first present MD simulations of guanidinium groups alone in lipid bilayers, and then, to mimic the molecular biology experiments, we present simulations of hydrophobic helices containing single Arg residues at different positions along the helix. We discuss the simulation results in the context of molecular biology results and show that the energetic discrepancy is reduced, but not eliminated, by considering free energy differences between Arg at the interface and at the center of the model helices. The reduction occurs because Arg snorkeling to the interface prevents Arg from residing in the bilayer center where the energetic cost of desolvation is highest. We then show that the problem with MD simulations is that they measure water-to-bilayer free energies, whereas the molecular biology experiments measure the energetics of partitioning from translocon to bilayer, which raises the fundamental question of the relationship between water-to-bilayer and water-to-translocon partitioning. We present two thermodynamic scenarios as a foundation for reconciliation of the simulation and molecular biology results. The simplest scenario is that translocon-to-bilayer partitioning is independent of water-to-bilayer partitioning; there is no thermodynamic cycle connecting the two paths
- …