75 research outputs found

    Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency

    Get PDF
    The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs, but does not abrogate, V(D)J recombination activity. In spite of a severe block at the pro–B cell stage and profound B cell lymphopenia, significant serum levels of immunoglobulin (Ig) G, IgM, IgA, and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP–keyhole limpet hemocyanin were severely impaired, even after adoptive transfer of wild-type CD4+ T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell–activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire, which is associated with defects in central and peripheral checkpoints of B cell tolerance, is an important, previously unrecognized, aspect of immunodeficiencies associated with hypomorphic RAG mutations

    Selective Induction of DNA Repair Pathways in Human B Cells Activated by CD4+ T Cells

    Get PDF
    Greater than 75% of all hematologic malignancies derive from germinal center (GC) or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID), GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR). Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID -/- mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells

    Differentiation of Chronic Lymphocytic Leukemia B Cells into Immunoglobulin Secreting Cells Decreases LEF-1 Expression

    Get PDF
    Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression. In this study, we first established a methodology that induces CLL cells to differentiate into immunoglobulin (Ig) secreting cells (ISC) using the TLR9 agonist, CpG, together with cytokines (CpG/c). CpG/c stimulation resulted in dramatic CLL cell phenotypic and morphologic changes, expression of cytoplasmic Ig, and secretion of light chain restricted Ig. CpG/c stimulation also resulted in decreased CLL cell LEF-1 expression and increased Blimp-1 expression, which is crucial for plasma cell differentiation. Further, Wnt pathway activation and cellular survival were impaired in differentiated CLL cells compared to undifferentiated CLL cells. These data support the notion that CLL can differentiate into ISC and that this triggers decreased leukemic cell survival secondary to the down regulation of LEF-1 and decreased Wnt pathway activation

    Cracking the BAFF code.

    Get PDF
    The tumour necrosis factor (TNF) family members B cell activating factor (BAFF) and APRIL (a proliferation-inducing ligand) are crucial survival factors for peripheral B cells. An excess of BAFF leads to the development of autoimmune disorders in animal models, and high levels of BAFF have been detected in the serum of patients with various autoimmune conditions. In this Review, we consider the possibility that in mice autoimmunity induced by BAFF is linked to T cell-independent B cell activation rather than to a severe breakdown of B cell tolerance. We also outline the mechanisms of BAFF signalling, the impact of ligand oligomerization on receptor activation and the progress of BAFF-depleting agents in the clinical setting

    Modification of the FoxP3 Transcription Factor Principally Affects Inducible T Regulatory Cells in a Model of Experimental Autoimmune Encephalomyelitis

    Get PDF
    T regulatory (Treg) cells expressing the transcription factor FoxP3 play a key role in protection against autoimmune disease. GFP-FoxP3 reporter mice have been used widely to study the induction, function and stability of both thymically- and peripherally-induced Treg cells. The N-terminal modification of FoxP3, however, affects its interaction with transcriptional co-factors; this can alter Treg cell development and function in certain self-antigen specific animal models. Interestingly, Treg cell function can be negatively or positively affected, depending on the nature of the model. In this study, we focused on the effect of the GFP-FoxP3 reporter on Treg cell development and function in the Tg4 mouse model. In this model, T cells express a transgenic T cell receptor (TCR) specific for the Myelin Basic Protein (MBP) peptide Ac1-9, making the animals susceptible to experimental autoimmune encephalomyelitis (EAE), a disease akin to multiple sclerosis in humans. Unlike diabetes-susceptible mice, Tg4 FoxP3(gfp) mice did not develop spontaneous autoimmune disease and did not demonstrate augmented susceptibility to induced disease. Concurrently, thymic generation of natural Treg cells was not negatively affected. The induction of FoxP3 expression in naive peripheral T cells was, however, significantly impaired as a result of the transgene. This study shows that the requirements for the interaction of FoxP3 with co-factors, which governs its regulatory ability, differ not only between natural and inducible Treg cells but also between animal models of diseases such as diabetes and EAE

    Оценка антропотолерантности видов рода Artemisia L., произрастающих в Украине

    No full text
    Hemerobe assessment of Artemisia L. species growing in Ukraine showed that 22 species (75,9 %) were hemerophytes and 7 species (24,1 %) were hemerophobes; 55,2% did not give preference to any of ecosystem types, but they distributed in different of them. 24 species belong to synanthropic complex of the genus, 9 of them (31 % of the whole species number) are adventive. From 15 apophytes 6 (40 %) are euapophytes, 7 (46,7 %) are hemiapophytes, and 2 (13,3 %) are spontaneophytes . Obligatory calciphytes formed non-synanthropic group – 5 species (17,2 %). Semblance of “successfull synanthrope” for Ukrainian species of Artemisia is revealed: xerophyte, glycaphyte, herbaceous with descending axis mono- or polycarpic
    corecore