105 research outputs found
Particulate matter pollution in African cities
Abstract:
Rapid urban population growth, air pollution emissions, and changing patterns of disease in African cities may increase the burden of air pollution-related morbidity and mortality in coming decades. Yet, air monitoring is limited across the continent and many countries lack air quality standards. This paper focuses on particulate matter (PM) pollution, one of the most relevant and widely used indicators of urban air quality. We provide an overview of published PM monitoring studies in Africa, outline major themes, point out data gaps, and discuss strategies for addressing particulate air pollution in rapidly growing African cities. Our review reveals that, although few studies have reported annual mean levels of coarse and fine particles, collective evidence from short- and long-term air monitoring studies across urban Africa demonstrates that pollution levels often exceed international guidelines. Furthermore, pollution levels may be rising as a result of increased motor vehicle traffic building on already high background concentrations of PM in many locations due to climatic and geographic conditions. Biomass burning and industrial activities, often located in cities, further exacerbate levels of PM. Despite the health risks this situation presents, air quality programs, particularly in sub-Saharan Africa, have been stalled or discontinued in recent years. Implementation of systematic PM data collection would enable air pollution-related health impact assessments, the development of strategies to reduce the air pollution health burden, and facilitate urban planning and transportation policy as it relates to air quality and health.
Keywords
Urban air quality, Environmental health, Particulate matter, PM10, PM2.5, Afric
Recommended from our members
Temperature, ozone, and mortality in urban and non-urban counties in the northeastern United States
Background: Most health effects studies of ozone and temperature have been performed in urban areas, due to the available monitoring data. We used observed and interpolated data to examine temperature, ozone, and mortality in 91 urban and non-urban counties. Methods: Ozone measurements were extracted from the Environmental Protection Agency's Air Quality System. Meteorological data were supplied by the National Center for Atmospheric Research. Observed data were spatially interpolated to county centroids. Daily internal-cause mortality counts were obtained from the National Center for Health Statistics (1988-1999). A two-stage Bayesian hierarchical model was used to estimate each county's increase in mortality risk from temperature and ozone. We examined county-level associations according to population density and compared urban (⩟1,000 persons/mile2) to non-urban (<1,000 persons/mile2) counties. Finally, we examined county-level characteristics that could explain variation in associations by county. Results: A 10 ppb increase in ozone was associated with a 0.45% increase in mortality (95% PI: 0.08, 0.83) in urban counties, while this same increase in ozone was associated with a 0.73% increase (95% PI: 0.19, 1.26) in non-urban counties. An increase in temperature from 70°F to 90°F (21.2°C 32.2°C) was associated with a 8.88% increase in mortality (95% PI: 7.38, 10.41) in urban counties and a 8.08% increase (95% PI: 6.16, 10.05) in nonurban counties. County characteristics, such as population density, percentage of families living in poverty, and percentage of elderly residents, partially explained the variation in county-level associations. Conclusions: While most prior studies of ozone and temperature have been performed in urban areas, the impacts in non-urban areas are significant, and, for ozone, potentially greater. The health risks of increasing temperature and air pollution brought on by climate change are not limited to urban areas
Measuring health-relevant businesses over 21 years: refining the National Establishment Time-Series (NETS), a dynamic longitudinal data set
Background
The densities of food retailers, alcohol outlets, physical activity facilities, and medical facilities have been associated with diet, physical activity, and management of medical conditions. Most of the research, however, has relied on cross-sectional studies. In this paper, we assess methodological issues raised by a data source that is increasingly used to characterize change in the local business environment: the National Establishment Time Series (NETS) dataset.
Discussion
Longitudinal data, such as NETS, offer opportunities to assess how differential access to resources impacts population health, to consider correlations among multiple environmental influences across the life course, and to gain a better understanding of their interactions and cumulative health effects. Longitudinal data also introduce new data management, geoprocessing, and business categorization challenges. Examining geocoding accuracy and categorization over 21 years of data in 23 counties surrounding New York City (NY, USA), we find that health-related business environments change considerably over time. We note that re-geocoding data may improve spatial precision, particularly in early years. Our intent with this paper is to make future public health applications of NETS data more efficient, since the size and complexity of the data can be difficult to exploit fully within its 2-year data-licensing period. Further, standardized approaches to NETS and other âbig dataâ will facilitate the veracity and comparability of results across studies
Determining the Enablers and Barriers for the Adoption of Clean Cookstoves in the Middle Belt of Ghana-A Qualitative Study.
Despite its benefits and espousal in developed counties, the adoption of clean cookstoves is reportedly low in less developed countries, especially in Sub-Saharan Africa. This qualitative study aimed at exploring and documenting the enablers and barriers for adoption of clean cookstove in the middle belt of Ghana. The findings showed convenience of clean cookstove use, reduced firewood usage, less smoke emission and associated health problems resulting from indoor air pollution and time for firewood gathering and cooking, good smell and taste of food as enabling factors for clean cookstove adoption. Factors such as safety, financial constraint (cost), non-availability of spare parts on the open market to replace faulty stove accessories, stove size and household size were the potential barriers to clean cookstove adoption. These findings help us to understand the factors promoting and inhibiting the adoption of clean cook stoves, especially in rural settings
Improving pregnancy outcomes in humans through studies in sheep
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus
Current respiratory symptoms and risk factors in pregnant women cooking with biomass fuels in rural Ghana.
BACKGROUND: More than 75% of the population in Ghana relies on biomass fuels for cooking and heating. Household air pollution (HAP) emitted from the incomplete combustion of these fuels has been associated with adverse health effects including respiratory effects in women that can lead to chronic obstructive pulmonary disease (COPD), a major contributor to global HAP-related mortality. HAP is a modifiable risk factor in the global burden of disease, exposure to which can be reduced. OBJECTIVE: This study assessed the prevalence of respiratory symptoms, as well as associations between respiratory symptoms and HAP exposure, as measured using continuous personal carbon monoxide (CO), in nonsmoking pregnant women in rural Ghana. METHODS: We analyzed current respiratory health symptoms and CO exposures upon enrollment in a subset (nâŻ=âŻ840) of the population of pregnant women cooking with biomass fuels and enrolled in the GRAPHS randomized clinical control trial. Personal CO was measured using Lascar continuous monitors. Associations between CO concentrations as well as other sources of pollution exposures and respiratory health symptoms were estimated using logistic regression models. CONCLUSION: There was a positive association between CO exposure per 1âŻppm increase and a composite respiratory symptom score of current cough (lasting >5âŻdays), wheeze and/or dyspnea (OR: 1.2, pâŻ=âŻ0.03). CO was also positively associated with wheeze (OR: 1.3, pâŻ=âŻ0.05), phlegm (OR: 1.2, pâŻ=âŻ0.08) and reported clinic visit for respiratory infection in past 4âŻweeks (OR: 1.2, pâŻ=âŻ0.09). Multivariate models showed significant associations between second-hand tobacco smoke and a composite outcome (OR: 2.1, pâŻ5âŻdays (OR: 3.1, pâŻ=âŻ0.01), wheeze (OR: 2.7, pâŻ<âŻ0.01) and dyspnea (OR: 2.2, pâŻ=âŻ0.01). Other covariates found to be significantly associated with respiratory outcomes include involvement in charcoal production business and dyspnea, and involvement in burning grass/field and wheeze. Results suggest that exposure to HAP increases the risk of adverse respiratory symptoms among pregnant women using biomass fuels for cooking in rural Ghana
Examining the relationship between household air pollution and infant microbial nasal carriage in a Ghanaian cohort.
BACKGROUND: Pneumonia, a leading cause of childhood mortality, is associated with household air pollution (HAP) exposure. Mechanisms between HAP and pneumonia are poorly understood, but studies suggest that HAP may increase the likelihood of bacterial, instead of viral, pneumonia. We assessed the relationship between HAP and infant microbial nasal carriage among 260 infants participating in the Ghana Randomized Air Pollution and Health Study (GRAPHS). METHODS: Data are from GRAPHS, a cluster-randomized controlled trial of cookstove interventions (improved biomass or LPG) versus the 3-stone (baseline) cookstove. Infants were surveyed for pneumonia during the first year of life and had routine personal exposure assessments. Nasopharyngeal swabs collected from pneumonia cases (n?=?130) and healthy controls (n?=?130) were analyzed for presence of 22 common respiratory microbes by MassTag polymerase chain reaction. Data analyses included intention-to-treat (ITT) comparisons of microbial species presence by study arm, and exposure-response relationships. RESULTS: In ITT analyses, 3-stone arm participants had a higher mean number of microbial species than the LPG (LPG: 2.71, 3-stone: 3.34, p?<?0.0001, n?=?260). This difference was driven by increased bacterial (p?<?0.0001) rather than viral species presence (non-significant). Results were pronounced in pneumonia cases and attenuated in healthy controls. Higher prevalence bacterial species were Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis. Exposure-response relationships did not yield significant associations between measured CO and nasal microbial carriage. CONCLUSIONS: Our intention-to-treat findings are consistent with a link between HAP and bacterial nasal carriage. No relationships were found for viral carriage. Given the null results in exposure-response analysis, it is likely that a pollutant besides CO is driving these differences
Ambulatory monitoring demonstrates an acute association between cookstove-related carbon monoxide and blood pressure in a Ghanaian cohort
Background
Repeated exposure to household air pollution may intermittently raise blood pressure (BP) and affect cardiovascular outcomes. We investigated whether hourly carbon monoxide (CO) exposures were associated with acute increases in ambulatory blood pressure (ABP); and secondarily, if switching to an improved cookstove was associated with BP changes. We also evaluated the feasibility of using 24-h ambulatory blood pressure monitoring (ABPM) in a cohort of pregnant women in Ghana.
Methods
Participants were 44 women enrolled in the Ghana Randomized Air Pollution and Health Study (GRAPHS). For 27 of the women, BP was measured using 24-h ABPM; home blood pressure monitoring (HBPM) was used to measure BP in the remaining 17 women. Personal CO exposure monitoring was conducted alongside the BP monitoring.
Results
ABPM revealed that peak CO exposure (defined as â„4.1 ppm) in the 2 hours prior to BP measurement was associated with elevations in hourly systolic BP (4.3 mmHg [95% CI: 1.1, 7.4]) and diastolic BP (4.5 mmHg [95% CI: 1.9, 7.2]), as compared to BP following lower CO exposures. Women receiving improved cookstoves had lower post-intervention SBP (within-subject change in SBP of â2.1 mmHg [95% CI: -6.6, 2.4] as compared to control), though this result did not reach statistical significance. 98.1% of expected 24-h ABPM sessions were successfully completed, with 92.5% of them valid according to internationally defined criteria.
Conclusions
We demonstrate an association between acute exposure to carbon monoxide and transient increases in BP in a West African setting. ABPM shows promise as an outcome measure for assessing cardiovascular health benefits of cookstove interventions
Prenatal and Postnatal Household Air Pollution Exposure and Infant Growth Trajectories: Evidence from a Rural Ghanaian Pregnancy Cohort.
BACKGROUND: The exposure-response association between prenatal and postnatal household air pollution (HAP) and infant growth trajectories is unknown. OBJECTIVES: To evaluate associations between prenatal and postnatal HAP exposure and stove interventions on growth trajectories over the first year of life. METHODS: The Ghana Randomized Air Pollution and Health Study enrolled n=1,414 pregnant women at â€24wk gestation from Kintampo, Ghana, and randomized them to liquefied petroleum gas (LPG), improved biomass, or open fire (control) stoves. We quantified HAP exposure by repeated, personal prenatal and postnatal carbon monoxide (CO) and, in a subset, fine particulate matter [PM with an aerodynamic diameter of â€2.5ÎŒm (PM2.5)] assessments. Length, weight, mid-upper arm circumference (MUAC) and head circumference (HC) were measured at birth, 3, 6, 9, and 12 months; weight-for-age, length-for-age (LAZ), and weight-for-length z (WLZ)-scores were calculated. For each anthropometric measure, we employed latent class growth analysis to generate growth trajectories over the first year of life and assigned each child to a trajectory group. We then employed ordinal logistic regression to determine associations between HAP exposures and growth trajectory assignments. Associations with stove intervention arm were also considered. RESULTS: Of the 1,306 live births, 1,144 had valid CO data and anthropometric variables measured at least once. Prenatal HAP exposure increased risk for lower length [CO odds ratioâ(OR)= 1.17, 95% CI: 1.01, 1.35 per 1-ppm increase; PM2.5 OR= 1.07, 95% CI: 1.02, 1.13 perâ10-ÎŒg/m3 increase], lower LAZ z-score (CO OR= 1.15, 95% CI: 1.01, 1.32 per 1-ppm increase) and stunting (CO OR= 1.25, 95% CI: 1.08, 1.45) trajectories. Postnatal HAP exposure increased risk for smaller HC (CO OR= 1.09, 95% CI: 1.04, 1.13 per 1-ppm increase), smaller MUAC and lower WLZ-score (PM2.5 OR= 1.07, 95% CI: 1.00, 1.14 and OR= 1.09, 95% CI: 1.01, 1.19 perâ10-ÎŒg/m3 increase, respectively) trajectories. Infants in the LPG arm had decreased odds of having smaller HC and MUAC trajectories as compared with those in the open fire stove arm (OR= 0.58, 95% CI: 0.37, 0.92 and OR= 0.45, 95% CI: 0.22, 0.90, respectively). DISCUSSION: Higher early life HAP exposure (during pregnancy and through the first year of life) was associated with poorer infant growth trajectories among children in rural Ghana. A cleaner-burning stove intervention may have improved some growth trajectories. https://doi.org/10.1289/EHP8109
Rationales, rhetoric and realities:FIFAâs World Cup in South Africa 2010 and Brazil 2014
The 2010 FIFA World Cup was heralded by mainstream media outlets, the local organisers, the South African government and FIFA as an unequivocal success. The month-long spectacle saw South Africa take centre stage and host the worldâs largest single sporting event. This occurred against a backdrop of rationales and promises made that the event would leave lasting legacies for all, in particular marginalised South Africans. The reality is quite different. In this article we consider the South African World Cup in the build up to Brazil 2014. We argue that the rationales and rhetoric are similar in both countries and suggest the reality for Brazil 2014 will be the same as South Africa 2010 in that the mega-event will be primarily funded by significant public investment, while the primary beneficiaries will be private capital and FIFA
- âŠ