666 research outputs found

    Inflation via logarithmic entropy-corrected holographic dark energy model

    Full text link
    We study the inflation via logarithmic entropy-corrected holographic dark energy LECHDE model with future event horizon, particle horizon and Hubble horizon cut-offs, and compare the results with those of obtained in the study of inflation by holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in HDE model. Moreover, the consistency with the observational data in LECHDE model of inflation, constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections.Comment: 11 pages, 10 figure

    Containing Analog Data Deluge at Edge through Frequency-Domain Compression in Collaborative Compute-in-Memory Networks

    Full text link
    Edge computing is a promising solution for handling high-dimensional, multispectral analog data from sensors and IoT devices for applications such as autonomous drones. However, edge devices' limited storage and computing resources make it challenging to perform complex predictive modeling at the edge. Compute-in-memory (CiM) has emerged as a principal paradigm to minimize energy for deep learning-based inference at the edge. Nevertheless, integrating storage and processing complicates memory cells and/or memory peripherals, essentially trading off area efficiency for energy efficiency. This paper proposes a novel solution to improve area efficiency in deep learning inference tasks. The proposed method employs two key strategies. Firstly, a Frequency domain learning approach uses binarized Walsh-Hadamard Transforms, reducing the necessary parameters for DNN (by 87% in MobileNetV2) and enabling compute-in-SRAM, which better utilizes parallelism during inference. Secondly, a memory-immersed collaborative digitization method is described among CiM arrays to reduce the area overheads of conventional ADCs. This facilitates more CiM arrays in limited footprint designs, leading to better parallelism and reduced external memory accesses. Different networking configurations are explored, where Flash, SA, and their hybrid digitization steps can be implemented using the memory-immersed scheme. The results are demonstrated using a 65 nm CMOS test chip, exhibiting significant area and energy savings compared to a 40 nm-node 5-bit SAR ADC and 5-bit Flash ADC. By processing analog data more efficiently, it is possible to selectively retain valuable data from sensors and alleviate the challenges posed by the analog data deluge.Comment: arXiv admin note: text overlap with arXiv:2307.03863, arXiv:2309.0177

    Tunneling in a Cosmological Model with Violation of Strong Energy Condition

    Get PDF
    The tunneling rate, with exact prefactor, is calculated to first order in \hbar for a closed FRW universe filled with perfect fluid violating the strong energy condition. The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-Kleinert path integral. It is shown that a closed FRW universe filled with a perfect fluid with small violation of strong energy condition is more probable to tunnel than the same universe with large violation of strong energy condition.Comment: 11 pages, LaTe
    • …
    corecore