2 research outputs found

    Influence of Hydrocarbon-Oxidizing Bacteria on the Growth, Biochemical Characteristics, and Hormonal Status of Barley Plants and the Content of Petroleum Hydrocarbons in the Soil

    No full text
    Much attention is paid to the relationship between bacteria and plants in the process of the bioremediation of oil-contaminated soils, but the effect of petroleum degrading bacteria that synthesize phytohormones on the content and distribution of these compounds in plants is poorly studied. The goal of the present field experiment was to study the effects of hydrocarbon-oxidizing bacteria that produce auxins on the growth, biochemical characteristics, and hormonal status of barley plants in the presence of oil, as well as assessing the effect of bacteria and plants separately and in association with the content of oil hydrocarbons in the soil. The treatment of plants with strains of Enterobacter sp. UOM 3 and Pseudomonas hunanensis IB C7 led to an increase in the length and mass of roots and shoots and the leaf surface index, and an improvement in some parameters of the elements of the crop structure, which were suppressed by the pollutant. The most noticeable effect of bacteria on the plant hormonal system was a decrease in the accumulation of abscisic acid. The data obtained indicate that the introduction of microorganisms weakened the negative effects on plants under abiotic stress caused by the presence of oil. Plant-bacteria associations were more effective in reducing the content of hydrocarbons in the soil and increasing its microbiological activity than when either organism was used individually

    PGP-Bacterium <i>Pseudomonas protegens</i> Improves Bread Wheat Growth and Mitigates Herbicide and Drought Stress

    No full text
    The reaction of plants to simultaneous stress action and treatment with biological stimulants still remains poorly studied. Laboratory and field experiments have been conducted to study the growth and yield of bread wheat (Triticum aestivum L.) of the variety Ekada 113; stress markers and quantitative ratios of phytohormones in plants under insufficient soil moisture; the effects of spraying with herbicide containing 2,4-D and dicamba and growth-stimulating bacterium Pseudomonas protegens DA1.2; and combinations of these factors. Under water shortage conditions, spraying plants with Chistalan reduced their growth compared to non-sprayed plants, which was associated with inhibition of root growth and a decrease in the content of endogenous auxins in the plants. Under conditions of combined stress, the treatment of plants with the strain P. protegens DA1.2 increased the IAA/ABA ratio and prevented inhibition of root growth by auxin-like herbicide, ensuring water absorption by the roots as well as increased transpiration. As a result, the content of malondialdehyde oxidative stress marker was reduced. Bacterization improved the water balance of wheat plants under arid field conditions. The addition of bacterium P. protegens DA1.2 to the herbicide Chistalan increased relative water content in wheat leaves by 11% compared to plants treated with herbicide alone. Application of the bacterial strain P. protegens DA1.2 increased the amount of harvested grain from 2.0–2.2 t/ha to 3.2–3.6 t/ha. Thus, auxin-like herbicide Chistalan and auxin-producing bacterium P. protegens DA1.2 may affect the balance of phytohormones in different ways. This could be the potential reason for the improvement in wheat plants’ growth during dry periods when the bacterium P. protegens DA1.2 is included in mixtures for weed control
    corecore