20 research outputs found

    Motion-Compensated Coding and Frame-Rate Up-Conversion: Models and Analysis

    Full text link
    Block-based motion estimation (ME) and compensation (MC) techniques are widely used in modern video processing algorithms and compression systems. The great variety of video applications and devices results in numerous compression specifications. Specifically, there is a diversity of frame-rates and bit-rates. In this paper, we study the effect of frame-rate and compression bit-rate on block-based ME and MC as commonly utilized in inter-frame coding and frame-rate up conversion (FRUC). This joint examination yields a comprehensive foundation for comparing MC procedures in coding and FRUC. First, the video signal is modeled as a noisy translational motion of an image. Then, we theoretically model the motion-compensated prediction of an available and absent frames as in coding and FRUC applications, respectively. The theoretic MC-prediction error is further analyzed and its autocorrelation function is calculated for coding and FRUC applications. We show a linear relation between the variance of the MC-prediction error and temporal-distance. While the affecting distance in MC-coding is between the predicted and reference frames, MC-FRUC is affected by the distance between the available frames used for the interpolation. Moreover, the dependency in temporal-distance implies an inverse effect of the frame-rate. FRUC performance analysis considers the prediction error variance, since it equals to the mean-squared-error of the interpolation. However, MC-coding analysis requires the entire autocorrelation function of the error; hence, analytic simplicity is beneficial. Therefore, we propose two constructions of a separable autocorrelation function for prediction error in MC-coding. We conclude by comparing our estimations with experimental results

    Double Double Descent: On Generalization Errors in Transfer Learning between Linear Regression Tasks

    Full text link
    We study the transfer learning process between two linear regression problems. An important and timely special case is when the regressors are overparameterized and perfectly interpolate their training data. We examine a parameter transfer mechanism whereby a subset of the parameters of the target task solution are constrained to the values learned for a related source task. We analytically characterize the generalization error of the target task in terms of the salient factors in the transfer learning architecture, i.e., the number of examples available, the number of (free) parameters in each of the tasks, the number of parameters transferred from the source to target task, and the correlation between the two tasks. Our non-asymptotic analysis shows that the generalization error of the target task follows a two-dimensional double descent trend (with respect to the number of free parameters in each of the tasks) that is controlled by the transfer learning factors. Our analysis points to specific cases where the transfer of parameters is beneficial. Specifically, we show that transferring a specific set of parameters that generalizes well on the respective part of the source task can soften the demand on the task correlation level that is required for successful transfer learning. Moreover, we show that the usefulness of a transfer learning setting is fragile and depends on a delicate interplay among the set of transferred parameters, the relation between the tasks, and the true solution
    corecore